UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET U PODGORICI

LAZAR NIKITOVIĆ

OPTIMIZACIJA MJESTA PRIKLJUČKA I SNAGE DISTRIBUIRANIH GENERATORA SA ASPEKTA MINIMIZACIJE GUBITAKA U ELEKTROENERGETSKOM SISTEMU

--- MASTER RAD ----

Podgorica, 2020. godina

PODACI I INFORMACIJE O MAGISTRANDU

Ime i prezime: Lazar Nikitović *Datum i mjesto rođenja:* 04.12.1994. godine, Cetinje *Naziv završenog osnovnog studijskog programa i godina završetka studija:* Energetika i automatika, 2017. godine

INFORMACIJE O MASTER RADU

 Naziv postdiplomskog studija: Energetika i automatika, Industrijska Elektrotehnika
 Naslov rada: Optimizacija mjesta priključka i snage distribuiranih generatora sa aspekta minimizacije gubitaka u elektroenergetskom sistemu
 Fakultet / Akademija na kojem je rad odbranjen: Elektrotehnički fakultet Podgorica

UDK, OCJENA I ODBRANA MASTER RADA

Datum prijave master rada: <u>25.04.2019. god.</u> Datum sjednice Vijeća univerzitetske jedinice na kojoj je prihvaćena tema: <u>25.10.2019. god.</u>

Komisija za ocjenu teme i podobnosti magistranda:

Prof. dr Vladan Radulović Prof. dr Saša Mujović Prof. dr Vesna Popović-Bugarin Doc. dr Martin Ćalasan Mentor: Prof. dr Saša Mujović

Komisija za ocjenu rada:

Prof. dr Vladan Radulović Prof. dr Saša Mujović Prof. dr Vesna Popović-Bugarin Prof. dr Milovan Radulović Doc. dr Martin Ćalasan

Komisija za odbranu rada:

Prof. dr Vladan Radulović Prof. dr Saša Mujović Prof. dr Vesna Popović-Bugarin Prof. dr Milovan Radulović Doc. dr Martin Ćalasan

Datum odbrane: _____

Datum promocije: _____

APSTRAKT

Savremeni (moderni) elektroenergetski sistemi (EES), osim konvencionalnih izvora energije, sadrže i brojne distribuirane generatore, koji su priključeni na prenosnom ili distributivnom nivou. Glavna odlika distribuiranih generatora baziranih na obnovljivim izvorima energije je da njihova proizvodnja varira i snažno zavisi od trenutne raspoloživosti resursa (npr. od raspoloživosti energije vjetra i sunca). Upravo zbog toga, integracijom distribuiranih generatora u EES, kreiraju se novi, znatno složeniji uslovi za upravljanje sistemom i optimizacijom njegovog rada.

Predmet istraživanja ovog rada je izbor optimalnog mjesta priključka distribuiranih generatora u EES-u, kao i proračun njihovih optimalnih snaga proizvodnje u cilju minimizacije aktivnih gubitaka u sistemu. U tom cilju, sve analize će biti sprovedene korišćenjem testnih elektroenergetskih sistema, tzv. IEEE testnih sistema, dok će optimizacija biti realizovana metodom nelinearnog programiranja (NLP), uz korišćenje solvera CONOPT, kojeg nudi programski paket GAMS.

Doprinosi ovog magistarskog rada predstavljaju: detaljan pregled optimizacionih metoda koje se koriste u cilju optimizacije rada EES-a sa aspekta minimizacije gubitaka u istom; poređenje najčešće korišćenih optimizacionih metoda, po pitanjima brzine konvergenicije i tačnosti, a u cilju rješavanja problema minimalnih gubitaka aktivne snage u sistemu; poređenje brzine konvergencije solvera CONOPT integrisanog u programskom paketu GAMS i drugih optimizacionih tehnika u cilju rješavanja problema minimalnih gubitaka u sistemu; izbor optimalnog mjesta priključka distribuiranih generatora u EES, ali i proračun njihovih optimalnih snaga proizvodnje, sa aspekta minimizacije gubitaka, primjenom ugrađenog solvera CONOPT u programskom paketu GAMS.

Pregledom dostupne literature konstatovano je postojanje brojnih metoda za optimizaciju rada EES-a, kao i širokog spektra kriterijuma na bazi kojih se sprovodi optimizacija. Brojnost optimizacionih metoda nedvosmisleno upućuje na zaključke o važnosti razmatrane problematike, ali i tome da ne postoji "najbolja" optimizaciona metoda. Generalno, svaka od razmatranih metoda ima komparativne prednosti i nedostake, koji se najčešće ogledaju u njihovoj složenosti, zahtijevanoj raspoloživosti visokog memorijskog kapaciteta računara, sporoj konvergenciji i sl. Zbog svega navedenog, potpuno je jasno da ova naučna oblast nudi puno mogućnosti za istraživanje.

<u>*Ključne riječi:*</u> optimizacija, minimalni aktivni gubici, distribuirani generatori, populacione metode, GAMS.

ABSTRACT

.

Besides conventional power plants, modern power systems consist of many distributed generators, which are connected (deployed) on both transmission and distribution voltage levels. DGs are dominantly based on renewable energy sources and, therefore, their generation capabilities strongly depends on weather conditions. This volatility affects power system management, as well as power system and optimization, making them very complex.

The subject of this master thesis is finding an optimal location for placement of the DGs in existing power system grids and calculation of optimal electricity production with respect to minimization of active power losses. Regarding that purpose, all calculations shall be conducted on standard IEEE test systems, while the optimization will be done using nonlinear programming (NLP) based on GAMS software, i.e. it's embedded solver CONOPT.

The key contributions of the master thesis include: a detailed review and analysis of the main power system optimization methods dealing with minimization of active power losses, the comparison of these methods with the method based on using of solver CONOPT, in terms of obtained results accuracy and requested convergence time and finding of optimal location for DG within power system in order to be achieved minimal active power losses.

The variety of optimization methods, which one may find in scientific papers and studies, unarguably imply the importance of performing of optimization procedure for better operation of modern power systems. However, there is no perfect optimization method and all methods have some drawbacks, such as complexity, engaging of large memory storage capacities or high convergence time. All listed points to necessity for further research in this field and finding of more comprehensive solutions.

<u>Key words</u>: optimization, minimization of active power loss, distributed generators, population methods, GAMS.

Najiskrenije se zahvaljujem mentoru prof. dr Saši Mujoviću, kako za ukazanu pomoć u odabiru teme za moj magistarski rad, tako i za svakodnevnu pomoć, razumijevanje, odvojeno vrijeme i onda kada su druge obaveze ispunjavale njegov radni dan.

Zahvalnost ne mogu izostaviti ni za doc. dr Martina Ćalasana, za svakodnevne sugestije, podsticaje i korisne savjete.

Posebnu zahvalnost dugujem svojoj porodici za konstantnu moralnu i finansijsku podršku, čime su omogućili nastavak mojih studija.

Lazar Nikitović

Sadržaj:

UVOD	1
2. OBNOVLJIVI IZVORI ENERGIJE	3
2.1. Energija vjetra	3
2.2. Sunčeva energija	5
3. IEEE TESTNE ŠEME	8
3.1. IEEE testna šema sa devet čvorova	8
3.2. IEEE testna šema sa četrnaest čvorova	10
3.3. IEEE testna šema sa trideset čvorova	12
4. OPTIMIZACIONE METODE	15
4.1. ABC optimizacioni metod	15
4.1.1. Algoritam ABC metoda	15
4.2. GSA optimizacioni metod	21
4.2.1. Algoritam GSA metoda	22
4.3. WDO optimizacioni metod	26
4.3.1. Algoritam WDO metode	27
4.4. PSO optimizacioni metod	32
4.4.1. Algoritam PSO metode	32
5. PROGRAMSKI PAKET GAMS I UGRAĐENI SOLVER CONOPT	36
5.1. Programski paket GAMS	36
5.2. Integrisani solver CONOPT	39
5.2.1. Definisanje CONOPT-a	39
5.2.2. Algoritam solvera CONOPT	39
5.2.3. Superiornost CONOPT-a u smislu vremena konvergencije	43
6. OPTIMIZACIONI MODELI I GUI APLIKACIJA	44
6.1. Optimizacioni modeli	44
6.2. GUI aplikacija	47
7. REZULTATI OPTIMIZACIJE	51
7.1. Poređenje rješenja optimizacije dobijenih solverom CONOPT i populacio metodama	onim 51
7.1.1. Rezultati dobijeni primjenom ABC metoda	52
7.1.2. Rezultati dobijeni primjenom GSA metoda	59
7.1.3. Rezultati dobijeni primjenom WDO metoda	66
7.1.4. Rezultati dobijeni primjenom PSO metoda	73
7.1.5. Rezultati dobijeni primjenom solvera CONOPT	80

7.2. Pregled međunarodnih radova u oblasti optimizacije elektroenergetskih sistema 7.2.1. Poređenje rješenja optimizacije po kriterijumu minimalnih troškova proizvodnje dobijena solverom CONOPT i predloženim rješenjima iz 7.2.2. Poređenje rješenja optimizacije po kriterijumu minimalnih gubitaka u mreži dobijena solverom CONOPT i predloženim rješenjima iz međunarodnih radova91 7.3. Uticaj distribuiranih generatora na IEEE testni sistem sa trideset čvorova 7.3.1. Uticaj povećanja proizvodnje aktivne snage iz distribuiranih izvora na troškove proizvodnje električne energije iz konvencijalnih elektrana i gubitke 7.3.2. Odabir optimalne lokacije za priključenje distribuiranih generatora

UVOD

Savremeni uređaji u industriji, telekomunikacijama, ali i u domaćinstvima, zahtijevaju neprekidno napajanje električnom energijom, sa strogo definisanim kvalitetom iste. Svi korišćeni električni potrošači su različiti i brojni, čije se potrebe za električnom energijom mijenjaju u svakom trenutku. Samim tim, mijenjaju se tokovi snaga kroz dalekovode, i uopšte, tokovi snaga u samom elektroenergetskom sistemu.

Svaki elektroenergedski sistem se sastoji od više visokonaponskih mreža, sa različitim nominalnim naponima, povezani energetskim transformatorima. Međutim, naponi nisu isti u svim sabirnicama jedne visokonaponske mreže, jer postoje naponi izazvani tokovima snaga kroz impedanse same mreže koji stvaraju gubitke. Smanjenje navedenih gubitaka u mreži ima veliku ulogu u pogledu efikasnog funkcionisanja samog sistema, ali i isporuci električne energije zahtijevanog kvaliteta.

Sa druge strane, pored mnoštva visokonaponskih mreža, svaki elektroenergetski sistem čini i veliki broj konvencijalnih elektrana koje kao gorivo koriste primarne izvore energije, kao što su fosilna goriva (ugalj, nafta, prirodni gas), drvo ili biomase, uranijum i sl. Upravo, zbog ograničene količine navedenih primarnih izvora energije, cijena proizvodnje električne energije varira kod svake konvencijalne elektrane.

Upravo zbog navedenog, veliku pažnju među istraživačima je privukla oblast optimizacije u energetici u cilju smanjenja aktivnih gubitaka u mreži i smanjenju troškova proizvodnje električne energije iz konvencijalnih elektrana.

S obzirom da je potražnja za električnom energijom u stalnom porastu iz dana u dan, a resursi za proizvodnju iste iz konvencijalnih elektrana sve manji, to je razvijanje tehnologije za proizvodnju energije iz elektrana koje koriste obnovljive izvore (energija vjetra, energija sunca, i sl.) zadobilo veliku pažnju. Uvažavajući navedeno, savremeni elektroenergetski sistemi postaju mnogo složeniji, a sama aktivnost optimizacije elektroenergetskih sistema dodatno dobija na značaju.

Optimizacija elektroenergetskih sistem, bilo s aspekta smanjenja aktivnih gubitaka u mreži, ili smanjenja troškova proizvodnje iz konvencijalnih elektrana, a uz prisustvo obnovljivih izvora energije, ima veoma važnu ulogu u cilju povećanja efikasnosti i ekonomičnosti same mreže. U smislu optimicije sistema korišćeni su mnogi optimizacioni metodi, od kojih većina pripada grupi populacionih metoda inspirisanih posmatranjem različitih pojava u prirodi.

S obzirom na veliki broj optimizacionih metoda koje su razvijane i usavršavane od strane velikog broja istraživača, isti su testirani na IEEE testnim mrežama. Neki od najčešće korišćenih testnih sistema su IEEE sa devet, četrnaest i trideset sabirnica. Pouzdanost i odabir optimizacione metode za primjenu u realnom vremenu zavisi upravo od proračunatih rješenja na IEEE testne sisteme.

Cilj ovog magistarskog rada je napraviti model najčešće korišćenih IEEE testnih sistema u smislu optimizacije (IEEE sa 9, 14 i 30 sabirnica) i za takav

model provjeriti adekvatnost jednih od najpopularnijih populacionih metoda: ABC (eng. *Artificial Bee Colony*), GSA (eng. *Gravitational Search Algorithm*), WDO (eng. *Wind Driven Optimization*) i PSO (eng. *Particle Swarm Optimization*). Međutim, pored populacionih metoda korišćen je i programski paket GAMS (eng. *General Algebraic Modeling System*) koji je namjenjen za kreiranje matematičkih modela iz različitih naučnih sfera, a zatim uz pomoć odabranog solvera koji GAMS nudi proračunava se optimalno rješenje. Upravo navedeni programski paket, sa odabranim solverom CONOPT, je iskorišćen za kreiranje matematičkih modela IEEE testnih sistema na kojim je zatim testiran sam solver. Osim navedenog, izvršena je modifikacija na postojećim IEEE testnim sistemima sa 9 i 30 sabirnica u smislu priključenja obnovljivih izvora energije, za koje su analizirani aktivni gubici u mreži i troškovi proizvodnje iz konvencijalnih elektrana. Na samom kraju, izvršena je optimizacija u pogledu pronalaska optimalne lokacije priključenja obnovljivih izvora energije uvažavajući minimalne aktivne gubitke u mreži.

U ovom radu je akcenat stavljen na programski paket GAMS i njegov ugrađeni solver CONOPT. Pored GAMS-a, realizovana je i GUI aplikacija u programskom paketu MATLAB, ali i prethodno spomenuti populacioni metodi analizirani u ovom radu.

U literaturi postoji veliki broj radova koji se bave optimizacijom elektroenergetskih sistema bilo sa stanovišta minimizacije aktivnih gubitaka u mreži, ili minimizacije troškova proizvodnje iz konvencijalnih elektrana.

Ovaj rad se sastoji od sedam poglavlja i pregleda korišćene literature.

U prvom poglavlju data su uvodna razmatranja i kratak opis problematike koja predstavlja predmet ovog rada.

U drugom poglavlju su objašnjeni značaj i težnja ka implementaciji obnovljivih izvora energije u elektroenergetskim sistemima.

U trećem poglavlju analizirani su IEEE testni sistemi, ali su i prikazane karakteristike kako dalekovoda tako i korišćenih generatorskih jedinica.

U četvrtom poglavlju detaljno su objašnjeni algoritmi ABC, GSA, WDO i PSO populacionih metoda i pojava u prirodi koje su podstakle istraživače u cilju njihovog stvaranja.

U petom poglavlju je prikazana struktura programskog paketa GAMS i algoritam njegovog ugrađenog solvera CONOPT. Takođe je u ovom poglavlju prikazana superiornost navedenog solvera u poređenju sa najčešće korišćenim solverima koje nudi programski paket GAMS po pitanju vremena konvergencije.

U šestom poglavlju je opisana GUI aplikacija realizovana u programskom paketu MATLAB i sam matematički model koji je korišćen u ovom radu.

Posljednje, a u isto vrijeme i najbitnije, poglavlje prikazuje rezultate proračunate u okviru ove magistarske teze. Takođe su u ovom poglavlju navedeni brojni radovi iz problematike kojom se bavi ovaj rad, a sa kojima je izvršeno poređenje sa rezultatima koji su proračunati solverom CONOPT.

2. OBNOVLJIVI IZVORI ENERGIJE

Potreba za električnom energijom je velika, i svake godine raste za otprilike 3.6% [1]. Naime, upotreba električne energije je postala sastavni dio života svakog čovjeka. Najveći dio električne energije se proizvodi sagorijevanjem fosilnih goriva (ulje, nafta, prirodni gas, i dr.) [2]. Međutim, postoje dvije loše strane ovakve proizvodnje električne energije: resursi fosilnih goriva se iscrpljuju velikom brzinom i nisu obnovljivi (kada fosilna goriva izgore nisu više upotrebljiva) i sagorijevanje fosilnih goriva dovodi do velikog zagađenja planete [1, 3]. Uvažavajući navedeno, potrebno je bilo razviti nove vidove proizvodnje električne energije koji se ne mogu iscrpiti, a koji ujedno ne zagađuju okolinu. Iz tog razloga, veliki broj istraživača širom svijeta je počeo razvijati tehnologiju za proizvodnju električne energije iz obnovljivih izvora [3].

Razvojem tehnologije nastali su različiti oblici obnovljivih izvora energije koji se mogu podijeliti u zavisnosti od toga koji vid energije transformišu u električnu. Prema primarnoj energiji koju koriste za proizvodnju električne energije svi obnovljivi izvori se mogu podijeliti u šest grupa [4]. Ovakva podjela obnovljivih izvora energije je prikazana na slici 2.1.

Slika 2.1 Podjela obnovljivih izvora energije u zavisnosti od primarne energije koju transformišu u električnu

Posljednjih decenija najdinamičniji razvoj obnovljivih izvora energije su doživleje vjetroelektrane i solarne elektrane [2]. U skladu sa navedenim, ovaj magistarski rad će se fokusirati na proizvodnju električne energije iz energije vjetra, ali i proizvodnju iz sunčeve energije.

Ovo poglavlje je podijeljeno na dva potpoglavlja. U prvom potpoglavlju će se opisati postupak transformacije energije vjetra u električnu energiju, dok će se u drugom dijelu ovog poglavlja prikazati mogućnost dobijanja električne energije uz pomoć sunčeve energije.

2.1. Energija vjetra

Vjetro generator je mašina koja energiju vjetra pretvara u električnu energiju. U tom smislu, svi implementirani vjetro generatori predstavljaju dio elektroenergetskog sistema. Zbog neravnomjerne i nepouzdane proizvodnje, većina vjetro generatora se ugrađuje sa skladištima za električnu energiju kako bi se proizvedena energija bolje iskoristila. Najčešće ugrađivani vjetro generatori su kapaciteta u dijapazonu od 1.5 do 5 MW [4].

Nezavisno od tipa vjetro generatora, sve vjetro jedinice se sastoje od četri glavne cjeline. Navedeni djelovi vjetro generatora su:

- rotor sa propelerima,
- upravljački dio,
- generator i
- stub sa kućištem.

S druge strane, proizvodnja električne energije iz vjetro generatora zavisi od brzine vjetra. Naime, sastavni dio osnovne dokumentacije svakog vjetro generatora predstavlja brzina vjetra-izlazna snaga karakteristika (V-P karakteristika). Zbog velikog značaja navedene karakteristike, na slici 2.2 je prikazan oblik brzina vjetra-izlazna snaga karakteristike vjetro generatora.

Slika 2.2 Brzina vjetra-izlazna snaga karakteristika vjetro generatora

Karakteristika sa slike 2.2 predstavlja veoma važan parametar prilikom analize efikasnosti rada vjetro generatora. Naime, svaka V-P karakteristika (slika 2.2) sadrži tri karakteristične tačke:

- brzina uključenja (engl. cut-in speed),
- nominalna brzina (engl. rated speed) i
- brzina isključenja (engl. cut-out speed).

Brzina uključenja predstavlja vrijednost vjetra nakon koje vjetro generator počinje sa proizvodnjom električne energije. Vrijednost brzine vjetra nakon koje je vjetro generator nominalno opterećen se naziva nominalnom brzinom. Brzina isključenja je ona vrijednost vjetra nakon koje vjetro generator prestaje sa proizvodnjom električne energije.

Međutim, V-P karakteristike svih vjetro generatora sadrže niz "statičkih" tačaka, koje su eksperimentalnim putem utvrđene. Naime, statičke tačke na V-P karakteristici su određene mjerenjem izlazne snage (u kW) ispitivane vjetro generatorske jedinice pri cjelobrojnim vrijednostima brzine (u m/s). Vrijednost brzine, odnosno snage, između dvije susjedne statičke tačke se može smatrati da linearno rastu, ili opadaju. Drugim riječima, V-P karakteristika sa slike 2.2, se može matematički predstaviti sljedećom jednačinom:

$$P = \begin{cases} 0, & \bar{\upsilon} < \bar{\upsilon}_{cut_in} \\ \frac{P_{i+1} - P_i}{\bar{\upsilon}_{i+1} - \bar{\upsilon}_i} (\bar{\upsilon} - \bar{\upsilon}_i) + P_i, & \bar{\upsilon}_{cut_in} \le \bar{\upsilon} < \bar{\upsilon}_{rated} \\ P_{max}, & \bar{\upsilon}_{rated} \le \bar{\upsilon} < \bar{\upsilon}_{cut_out} \\ 0, & \bar{\upsilon}_{cut_out} \le \bar{\upsilon} \end{cases}$$
(2.1)

gdje je *P*-aktivna snaga na izlazu vjetrogeneratora, P_i - aktivna snaga u *i*-toj statičkoj tački na V-P karakteristici, P_{max} - maksimalna aktivna snaga koja se može javiti na izlazu vjetrogeneratora, \bar{v} - brzina vjetra za koju se proračunava aktivna snaga na izlazu vjetrogeneratora, \bar{v}_i - brzina vjetra u *i*-toj statičkoj tački na V-P karakteristici [5].

S druge strane, moguće je na osnovu brzine vjetra izvršiti procjenu izlazne snage vjetro generatora (relacija (2.2)). Vjetro generatorska jedinica pretvara kinetičku energiju vjetra u električnu uz pomoć dva ili više (najčešće tri) propelera. Snaga koju vjetar "prenosi" na propelerima vjetro generatora je funkcija gustine vazduha (ρ), brzine vjetra (v), radijusa propelera (R) i koeficijenta snage ($C_p(\beta, \lambda)$):

$$P_{\nu} = 0.5\rho\pi R^2 \nu^3 C_{\nu}(\beta,\lambda), \qquad (2.2)$$

pri čemu je λ odnos brzine turbine i brzine vjetra, a β ugao zakretanja lopatica turbina. Teorijski maksimum koeficijenta C_p je 0.59, dok se u praksi njena vrijednost nalazi u dijapazonu od 0.25 do 0.45.

Uvažavajući do sada navedeno, moguće je proračunati snagu vjetro generatora koristeći jedan od dva matematička modela koja su predstavljena relacijama (2.1) i (2.2).

2.2. Sunčeva energija

Najveći izvor energije na planeti Zemlje predstavlja sunčevo zračenje [6]. Snaga sunčevog zračenja iznosi 0.17 *EW* ($1EW = 10^{18}W$) [7], od čega se:

- 42% pretvara direktno u toplotu,
- 34% reflektuje nazad,
- 23% gubi na isparavanje vode i
- 1% absorbuje u zemljinoj kori.

Konverzija energije sunčevog zračenja u električnu energiju je moguće ostvariti uz pomoć fotonaponskih sistema (engl. *photovoltaic systems – PV systems*). Naziv fotonaponski sistem se odnosi na skup elemenata koji čine jednu funkcionalnu cjelinu. Drugim riječima, fotonaponski sistem se sastoji od:

- fotonaponskih ćelija (solarnih ćelija) čija je uloga konverzija energije sunčevog zračenja u električnu energiju jednosmjerne struje i napona,
- skladišta električne energije koja služi za ekonomsku i efikasnu preraspodjelu proizvedene električne energije i

- kontrolnog postrojenja gdje se vrši konverzija električne energije jednosmjerne struje i napona u električnu energiju naizmjeničnih struja i napona.

S obzirom da solarne ćelije imaju najveći značaj kod svakog fotonaponskog sistema, to je dobar model iste veoma važan pri analizi navedenog sistema. Uvažavajući navedeno, u ovom radu je prikazan jednodiodni model solarne ćelije (slici 2.3).

Slika 2.3 Jednodiodni model solarne ćelije

Izvor sa slike 2.3 predstavlja stalni izvor jednosmjerne struje vrijdenosti I_{fn} , koji je paralelno vezan sa diodom kroz koju protiče struja I_d . Otpornici R_p i R_r predstavljaju otpornosti solarne ćelije. S obzirom da je otpornost otpornika R_p velike vrijednosti, to je možemo zanemariti u cilju pojednostavljenja samog modela. Sa druge strane, otpornost redne veze R_r ima veoma malu vrijednost. U tom smislu, a u cilju većeg pojednostavljenja, moguće je uvesti dvije pretpostavke: $R_p \rightarrow \infty$ i $R_r \rightarrow 0$. Uvažavajući navedena zanemarenja, šema jednodiodnog modela solarne ćelije sa slike 2.3 se može predstaviti slikom 2.4.

Slika 2.4 Uprošten jednodiodni model solarne ćelije

Sa slike 2.4 jasno se vidi da je izlazna struja iz fotonaponske ćelije jednaka razlici struja stalnog jednosmjernog izvora i onoj koja protiče kroz diodu. Matematički zapis izlazne struje fotnaponske ćelije sa uprošćenog jednodiodnog modela solarne ćelije je:

$$I = I_{fn} - I_d = I_{fn} - I_0 \left(e^{\frac{qU}{\beta kT}} - 1 \right),$$
(1.3)

pri čemu je *U* izlazni napon, *I* izlazna struja, I_0 inverzna struja zasićenja diode, *k* Bolcmanova konstanta, β faktor idealnosti diode, a *q* količina naelektrisanja jednog elektrona.

Najbitnija karakteristika svake fotonaponske ćelije je napon-struja karakteristika (U-I karakteristika). Sa navedene karakteristike je moguće odrediti tačku pri kojoj izlazna snaga iz solarne ćelije ima najveću vrijednost. Oblik U-I karakteristike fotonaponske ćelije je prikazan na slici 2.5.

Slika 2.5 Napon-struja karakteristika fotonaponske ćelije

Sa slike 2.5 se primjećuju tri karakteristične tačke. Navedene tačke predstavljaju vrijednost struje kratkog spoja (lks), vrijednost napona praznog hoda (Uph) i tačku pri kojoj je vrijednost izlazne snage maksimalna.

Ako je u jednačini (2.3) vrijednost napona U jednaka nuli, onda se vrijednost proračunate struje naziva strujom kratkog spoja (lks):

$$I_{ks} = I_{fn}. (2.4)$$

Sa druge strane, ako je u relaciji (2.3) vrijednost struje I jednaka nuli i ako je izlazni napon U, tada navedeni napon predstavlja naponom praznog hoda:

$$U_{ph} = \frac{\beta kT}{q} ln \left(\frac{l_{fn}}{l_0} + 1\right).$$
(2.5)

Uvažavajući relaciju (2.3), definisana je jednačina za proračun izlazne snage iz solarne ćelije. U skladu sa navedenim, matematički zapis koji opisuje izlaznu snagu iz fotonaponske ćelije je prikazan sljedećom matematičkom relacijom:

$$P = UI = U \left[I_{fn} - I_0 \left(e^{\frac{qU}{\beta kT}} - 1 \right) \right].$$
(2.6)

Relacije (2.3)-(2.5) opisuju jednodiodni model fotonaponske ćelije, i kao takve se mogu koristiti pri detaljnijoj analizi istih.

3. IEEE TESTNE ŠEME

U ovom poglavlju će biti opisane IEEE testne šeme, koje se koriste za testiranje kvaliteta optimizacionih metoda. Testne šeme na kojima su testirani optimizacioni metodi, a kojma se bavi ovaj magistarski rad, predstavljaju IEEE testne šeme sa devet, četrnaest i trideset čvorova. Svaka od navedenih šema je privukla veliki broj istraživača koji se bave optimizacijom elektroenergetskih sistema u cilju implementacije novih ideja i razvoja postojećih metoda. S obzirom da je cilj ovog rada implementacija optimizacionih metoda, koje su detaljno analizirane u poglavljima četri i pet, na IEEE testne šeme, to je ovo poglavlje posvećeno navedenim šemama. Ovo poglavlje je podijeljeno u tri potpoglavlja. Svako od potpoglavlja se odnosi na jednu od tri navedene IEEE testne šeme.

3.1. IEEE testna šema sa devet čvorova

IEEE testna šema sa devet čvorova je jedna od najmanjih IEEE testnih sistema. Navedena šema ima veliki značaj u ispitivanju elektroenergetskih sistema novim pristupima, i metodama. IEEE šema sa devet čvorova predstavlja jednostavan sistem sa tri generatora, a koji čini mali dio kordinacionog vijeća zapadnog sistema (engl. *Western System Coordinating Council - WSCC*), zbog čega se često i naziva WECC testnom šemom sa devet čvorova [8]. Jednopolna šema IEEE testnog sistema sa devet čvorova je prikazana na sljedećoj slici (slika 3.1).

Slika 3.1 Jednopolna šema IEEE testnog sistema sa devet čvorova

Sa slike 3.1 se može primijetiti da se IEEE testni sistem sa devet čvorova sastoji od 9 sabirnica, 9 vodova, 3 generatora i 3 transformatora. Podaci koji se odnose na generatore, vodove i opterećenje na posmatrani sistem su raspoređeni u tri zasebne tabele. Sve vrijednosti navedenih podataka su date

u jediničnim vrijednostima. Bazna vrijednost ukupne snage je 100MVA, a naponski nivoi na sabirnicama imaju vrijednosti: 13.8kV, 16.5kV, 18kV i 230kV [8, 9].

U prvoj tabeli (tabela 3.1) prikazani su podaci koji se odnose kako na minimalnu i maksimalnu proizvodnju generatorskih jedinica, tako i na njihove koeficijente troškova proizvodnje [9].

Br. gen	P ^{min} (MW)	P _i ^{max} (MW)	Q_i^{min} (MVAr)	Q _i ^{max} (MVAr)	a _i	b _i	C _i
1	10	250	-300	300	150	5.0	0.1100
2	10	300	-300	300	600	1.2	0.0850
3	10	270	-300	300	335	1.0	0.1225

Tabela 3.1 Podaci o generatorima za IEEE testni sistem sa devet čvorova

U drugoj tabeli (tabela 3.2) su dati podaci koji se odnose na potražnju aktivne odnosno reaktivne snage od strane konzuma [9].

Br.	Opterećenje					
čvora	$P_{pot}(MW)$	Q _{pot} (MVAr)				
1	0.00	0.0				
2	0.00	0.0				
3	0.00	0.0				
4	0.00	0.0				
5	125	50				
6	90.0	30				
7	0.00	0.0				
8	100	35				
9	0.00	0.0				

Tabela 3.2 Podaci o opterećenjima na IEEE testni sistem sa devet čvorova

U trećoj, posljednjoj, tabeli su prikazani podaci o vodovima za razmatrani IEEE testni sistem sa devet čvorova (tabela 3.3) [9].

Tabela 3.3 Podaci o vodovima za IEEE testni sistem sa devet čvorova

Br.	Od	Ka	Z _{voda}	B_{c}	
voda	čvora	čvoru	R	Х	(p.u.)
1	1	4	0.0000	0.0576	0.000
2	4	5	0.0100	0.0850	0.176
3	4	6	0.0170	0.0920	0.158
4	5	7	0.0320	0.1610	0.306
5	6	9	0.0390	0.1700	0.358
6	2	7	0.0000	0.0625	0.000
7	7	8	0.0085	0.0720	0.149
8	8	9	0.0119	0.1008	0.209
9	3	9	0.0000	0.0586	0.000

3.2. IEEE testna šema sa četrnaest čvorova

Jedan dio Američkog elektroenergetskog sistema u Midwestern-u, iz februara 1962. godine, predstavlja IEEE testnu šemu sa četrnaest čvorova [10]. Jednopolna šema ovog sistema je prikazana na slici 3.2 [11].

Slika 3.2 Jednopolna šema IEEE testnog sistema sa četrnaest čvorova

Posmatrana IEEE testna šema se sastoji od 14 sabirnica, 20 vodova, 5 generatora i 3 transformatora. Svi podaci koji se odnose na IEEE testnu šemu sa četrnaest čvorova su podijeljeni u tri tabele: podaci o generatorima, podaci o zahtijevanoj električnoj energiji (opterećenju) od strane konzuma i podaci o vodovima. Podaci prikazani u nastavku ovog potpoglavlja su dati u jediničnim vrijednostima. Bazna vrijednost ukupne snage za posmatrani sistem iznosi 100MVA. Naponski nivoi na sabirnicama su: 13.8kV, 18kV i 69kV [12].

U tabeli 3.4. su prikazani podaci o generatorima, njihova maksimalna i minimalna proizvodnja aktivne i reaktivne snage, ali i koeficijenti troškova proizvodnje.

Br. gen	P ^{min} (MW)	P _i ^{max} (MW)	Q_i^{min} (MVAr)	Q _i ^{max} (MVAr)	a _i	b _i	Ci
1	0	332.4	0.0	10	0	20	0.0430293
2	0	140.0	-40	50	0	20	0.2500000
3	0	100.0	0.0	40	0	40	0.0100000
4	0	100.0	-6.0	24	0	40	0.0100000
5	0	100.0	-6.0	24	0	40	0.0100000

Tabela 3.4 Podaci o generatorima za IEEE testni sistem sa četrnaest čvorova

Podaci o opterećenju na IEEE testnu šemu sa četrnaest čvorova se nalaze u tabeli 3.5 [13]. U navedenoj tabeli se mogu pronaći vrijednosti zahtijevane aktivne i reaktivne snage, od strane potrošača (konzuma).

Br.	Opterećenje					
čvora	$P_{pot}(MW)$	$Q_{pot}(MVAr)$				
1	0.00	0.00				
2	21.7	12.7				
3	94.2	19.0				
4	47.8	-3.9				
5	7.60	1.60				
6	11.2	7.50				
7	0.00	0.00				
8	0.00	0.00				
9	29.5	16.6				
10	9.00	5.80				
11	3.50	1.80				
12	6.10	1.60				
13	13.5	5.80				
14	14.9	5.00				

Posljednji, ali ne i najmanje važni, podaci o vodovima su prikazani u tabeli 3.6 [13]. Naime, u tabeli 3.6 su date vrijednosti aktivne i reaktivne otpornosti vodova i supscetanse otočnih grana zamjenske Π šeme posmatranog voda.

Tabela 3.6 Podaci o vodovima za IEEE testni sistem sa četrnaest čvorova

Br.	Od	Ka	Z _{voda}	(p.u.)	B_{c}
voda	čvora	čvoru	R	Х	(p.u.)
1	1	2	0.01938	0.05917	0.0528
2	1	5	0.05403	0.22304	0.0492
3	2	3	0.04699	0.19797	0.0438
4	2	4	0.05811	0.17632	0.0340
5	2	5	0.05695	0.17388	0.0346
6	3	4	0.06701	0.17103	0.0128
7	4	5	0.01335	0.04211	0.0000
8	4	7	0.00000	0.20912	0.0000
9	4	9	0.00000	0.55618	0.0000
10	5	6	0.00000	0.25202	0.0000
11	6	11	0.09498	0.19890	0.0000
12	6	12	0.12291	0.25581	0.0000
13	6	13	0.06615	0.13027	0.0000
14	7	8	0.00000	0.17615	0.0000
15	7	9	0.00000	0.11001	0.0000
16	9	10	0.03181	0.08450	0.0000
17	9	14	0.12711	0.27038	0.0000
18	10	11	0.08205	0.19207	0.0000
19	12	13	0.22092	0.19988	0.000
20	13	14	0.17093	0.34802	0.0000

3.3. IEEE testna šema sa trideset čvorova

IEEE testna šema sa trideset čvorova predstavlja kompletni Američki elektroenergetski sistem, lociran u Midwestern-u, koji je počeo sa radom u decembru 1961. godine [14]. Ova IEEE šema je jedna od najčešće korišćenih šema za ispitivanje novih inovativnih metoda u cilju poboljšanja elektroenergetskih sistema.

Jednopolna šema IEEE testnog sistema sa trideset čvorova je prikazana na slici 3.3 [15].

Slika 3.3 Jednopolna šema IEEE testnog sistema sa trideset čvorova

IEEE testna šema sa slike 3.3 se sastoji od 30 sabirnica, 41 voda, 6 generatora i 4 transformatora. S obzirom da su vrijednosti svih ulaznih parametara dati u jediničnim vrijednostima, to je potrebno definisati baznu vrijednost ukupne snage i naponske nivoe na svakoj od sabirnica. Bazna vrijednost ukupne snage za IEEE šemu sa trideset čvorova iznosi 100MVA. Sa druge strane, bazne vrijednosti napona na sabirnicama nisu precizno definisane. Međutim, zna se da vrijednost napona na sabirnicama moraju imati neke od sljedećih vrijednosti: 1kV, 11kV, 33kV i 132kV [16].

Ulazni parametri IEEE testne šeme sa trideset čvorova su dati u tri tabele. U prvoj tabeli (Tabela 3.7) su prikazani parametri koji se odnose na generatore [15].

Br. gen	P ^{min} (MW)	P _i ^{max} (MW)	Q ^{min} (MVAr)	Q _i ^{max} (MVAr)	a _i	b _i	c _i
1	50	200	-	-	0	2.00	0.00375
2	20	80	-20	100	0	1.75	0.01750
3	15	50	-15	80	0	1.00	0.06250
4	10	35	-15	60	0	3.25	0.00834
5	10	30	-10	50	0	3.00	0.02500
6	12	40	-15	60	0	3.00	0.02500

Tabela 3.7 Podaci o generatorima za IEEE testni sistem sa trideset čvorova

U tabeli 3.8 su prikazane vrijednosti aktivne i reaktivne snage zahtijevane od strane potrošača (konzuma). Jedinice aktivnih i reaktivnih snaga iz tabele 3.8 su izražene u MW i MVAr, respektivno [15].

Br.	Br. Opterećenje		Br.	Opte	rećenje
čvora	$P_{pot}(MW)$	Q _{pot} (MVAr)	čvora	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	0.00	0.00	16	3.50	1.80
2	21.7	12.7	17	9.00	5.80
3	2.40	1.20	18	3.20	0.90
4	7.60	1.60	19	9.50	3.40
5	94.2	19.0	20	2.20	0.70
6	0.00	0.00	21	17.5	11.2
7	22.8	10.9	22	0.00	0.00
8	30.0	30.0	23	3.20	1.60
9	0.00	0.00	24	8.70	6.70
10	5.80	2.00	25	0.00	0.00
11	0.00	0.00	26	3.50	2.30
12	11.2	7.50	27	0.00	0.00
13	0.00	0.00	28	0.00	0.00
14	6.20	1.60	29	2.40	0.90
15	8.20	2.50	30	10.6	1.90

Tabela 3.8 Podaci o opterećenju na IEEE sistem sa trideset čvorova

U posljednjoj tabeli (tabela 3.9) su date vrijednosti aktivnih i reaktivnih otpora vodova, supscetanse otočnih grana, kao i kapaciteti tokova aktivnih snaga kroz vodove [15].

<i>Fabela 3.9</i> Podaci o vodovima za	IEEE testni sistem	sa trideset čvorova
--	--------------------	---------------------

Br.	Od	Ka	Z _{voda} (p.u.)		$B_c/2$	S_{voda}^{max}
voda	čvora	čvoru	R	Х	(p.u.)	(MVA)
1	1	2	0.0192	0.0575	0.0264	130
2	1	3	0.0452	0.1852	0.0204	130
3	2	4	0.0570	0.1737	0.0184	65
4	3	4	0.0132	0.0379	0.0042	130
5	2	5	0.0472	0.1983	0.0209	130
6	2	6	0.0581	0.1763	0.0187	65
7	4	6	0.0119	0.0414	0.0045	90
8	5	7	0.0460	0.1160	0.0102	70
9	6	7	0.0267	0.0820	0.0085	130
10	6	8	0.0120	0.0420	0.0045	32
11	6	9	0.0000	0.2080	0.0000	65
12	6	10	0.0000	0.5560	0.0000	32
13	9	11	0.0000	0.2080	0.0000	65
14	9	10	0.0000	0.1100	0.0000	65
15	4	12	0.0000	0.2560	0.0000	65
16	12	13	0.0000	0.1400	0.0000	65
17	12	14	0.1231	0.2559	0.0000	32
18	12	15	0.0662	0.1304	0.0000	32
19	12	16	0.0945	0.1987	0.0000	32
20	14	15	0.2210	0.1997	0.0000	16
21	16	17	0.0824	0.1932	0.0000	16
22	15	18	0.1070	0.2185	0.0000	16
23	18	19	0.0639	0.1292	0.0000	16
24	19	20	0.0340	0.0680	0.0000	32
25	10	20	0.0936	0.2090	0.0000	32
26	10	17	0.0324	0.0845	0.0000	32
27	10	21	0.0348	0.0749	0.0000	32
28	10	22	0.0727	0.1499	0.0000	32
29	21	22	0.0116	0.0236	0.0000	32
30	15	23	0.1000	0.2020	0.0000	16
31	22	24	0.1150	0.1790	0.0000	16
32	23	24	0.1320	0.2700	0.0000	16
33	24	25	0.1885	0.3292	0.0000	16
34	25	26	0.2544	0.3800	0.0000	16
35	25	27	0.1093	0.2087	0.0000	16
36	28	27	0.0000	0.3690	0.0000	65
37	27	29	0.2198	0.4153	0.0000	16
38	27	30	0.3202	0.6027	0.0000	16
39	29	30	0.2399	0.4533	0.0000	16
40	8	28	0.0636	0.2000	0.0214	32
41	6	28	0.0169	0.0599	0.0065	32

4. OPTIMIZACIONE METODE

U ovom radu se vršila optimizacija IEEE testnih sistema sa devet, četrnaest i trideset čvorova, kako uz pomoć solvera CONOPT ugrađenog u programskom paketu GAMS, tako i pomoću četri populacione metode realizovane u MATLAB-u. Korišćene populacione metode su: ABC (eng. *Artificial Bee Colony*), GSA (eng. *Gravitational Search Algorithm*), WDO (eng. *Wind Driven Optimization*) i PSO (eng. *Particle Swarm Optimization*).

U ovom poglavlju će biti riječi o korišćenim populacionim metodama, dok će se detaljnijom primjenom solvera CONOPT baviti sljedeće poglavlje. Ovo poglavlje je podjeljeno u četri potpoglavlja. U spomenutim potpoglavljima će biti objašnjene ABC, GSA, WDO i PSO optimizacione metode, respektivno.

4.1. ABC optimizacioni metod

ABC metod je prvi razvio Devis Karaboga 2005. godine. Ovaj metod je nastao posmatranjem ponašanja i kretanja pčela. Ideja ovog metoda je zasnovana na sposobnosti pčela da pronađu mjesto sa najviše resursa hrane. Naime, određene pčele (tkz. pčele izviđači) se kreću nasumično u potrazi za hranom. Nakon uspješnog pronalaska izvora hrane, pčele izviđači svojim plesom "saopštavaju" ostalim pčelama svoj pronalazak. Spomenutim plesom, pčele izviđači prikupljaju nove regrute koji dalje učestvuju u prikupljanju hrane sa novo pronađenog izvora. U slučaju pronalaska boljeg izvora hrane u svojoj potrazi, pčela izviđač zaboravlja prethodni izvor, dok u sjećanju ostaje samo posljednje zapamćena lokacija izvora hrane [17].

Upravo ovakvo ponašanje pčela je iskorišćeno kao prekretnica za realizaciju ABC metoda. U sljedećem dijelu će biti riječi o samom algoritmu koji ovaj metod koristi.

4.1.1. Algoritam ABC metoda

U skladu sa navedenim, ABC metod je nastao usljed posmatranja kretanja roja pčela, kao i njihov način potrage za resursima hrane. Naime, kod ABC metode sve pčele pripadaju jednoj od tri grupe, i to: izviđači, promatrači i skauti.

Ukratko, proces pronalaska mjesta sa najvećim izvorom hrane se može posmatrati kroz sljedeće tri velike cjeline [18]:

- 1. U prvoj, inicijalnoj, fazi sve pčele počinju nasumice istraživati okolinu u cilju pronalaska najboljeg izvora hrane.
- 2. Nakon inicijalne faze sve pčele se dijele u dvije grupe: pčele izviđači i pčele promatrači. Pčele koje su pronašle izvor hrane postaju pčela izviđači, dok se ostale vraćaju u košnicama i postaju pčele promatrači. Nakon što pčele izviđači prikupe dovoljno hrane iz pronađenog izvora, vraćaju se u svojim košnicama gdje imaju dvije

mogućnosti koje biraju. Prva mogućnost je da se vrate na pronađeni izvor hrane i da ga dodatno istraže, a druga mogućnost je da plesom "saopšte" pčelama promatračima svoj pronalazak novog izvora. Ako pčele promatrači odbiju pčelu izviđača, ili je pak izvor hrane koji je pronađen od strane pčele izviđača iscrpljen, to onda pčela izviđač postaje skaut. Kada izviđač postane skaut, onda on počinje da nasumice traži novo mjesto sa izvorom hrane. Ako skaut pronađe novi izvor hrane, to on opet postaje pčela izviđač.

 Pčele promatrači posmatraju ples pčela izviđača i upoređuju ga sa kvalitetom hrane koji je izviđač donio. Nakon toga odlučuju da li da idu sa pčelom izviđačem, ili ostanu u košnici.

U algoritmu ABC metode koji je predložio Karaboga, moguća optimalna rješenja predstavljaju pozicije izvora hrane. Količina hrane u pronađenom izvoru prestavlja profitabilnost posmatranog optimalnog rješenja. Ovim algoritmom je uzeta pretpostavka da jedan izvor hrane može pronaći samo jedna pčela izviđač. Drugim riječima, broj pčela izviđača određuje broj izvora hrane [19].

Prva faza algoritma ABC metoda se zasniva na nasumičnom odabiru izbora hrane uvažavajući gornje i donje granice posmatranog prostora. Ovakav nasumični izbor izvora hrane je predložen u radu [19], dok je matematički zapis generisanja izvora hrane dat izrazom:

$$x_{ij} = x_i^{min} + rand(0,1)(x_i^{max} - x_i^{min})$$
(4.1)

gdje su granice za *i* i *j* [1,*SN*] i [1,*D*], respektivno. *SN* predstavlja broj izvora hrane, dok D predstavlja broj optimizacionih parametara, a x_i označava *i*-ti izvor hrane.

S druge strane, kada pčela izviđač pronađe izvor hrane, koji je prihvaćen od strane pčela promatrača, ona dalje nastavlja sa ispitivanjem susjedne teritorije. Matematički model traženja susjedne teritorije je definisan sljedećom formulom [19]:

$$v_{ij} = x_{ij} + \phi_{ij}(x_{ij} - x_{kj})$$
(4.2)

gdje je *j* nasumičan cijeli broj iz skupa [1, D], a *k* nasumičan cijeli broj koji ne može biti jednak broju *i*. Sa druge strane, u dijapazonu [-1, 1] generisan je realan broj uniformnom raspodjelom, i kao takav označen sa ϕ_{ij} , dok je susjedni izvor hrane označen sa v_{ij} .

Ako izvor hrane x_i prevazilazi donju ili gornju granicu date u startu, to ih je potrebno postaviti na tim vrijednostima. Odnosno, ako je $x_i > x_i^{max}$, onda u daljnjem postupku x_i postaje x_i^{max} . Sa druge strane, ako je $x_i < x_i^{min}$, to onda x_i postaje x_i^{min} .

Nakon pronalaska v_i koje se nalazi unutar posmatranih granica, onda se može definisati profitabilna funkcija za minimizaciju u okolini posmatrane tačke (v_i) [19]:

$$prob_{i} = \begin{cases} 1/(1+f_{i}), za \ f_{i} \ge 0\\ 1+abs(f_{i}), za \ f_{i} < 0 \end{cases}$$
(4.3)

gdje je f_i funkcija cilja u okolini tačke v_i . $prob_i$ predstavlja količinu hrane u okolini tačke v_i .

U slučaju da je izvor hrane veći u okolini tačke v_i u odnosu na izvor hrane u okolini tačke x_i , to će pčela izviđač zapamtiti poziciju izvora v_i , a pritom zaboraviti poziciju izvora x_i . Na kraju je potrebno proračunati vjerovatnoću količine hrane u svakom izvoru. Naime, spomenutu vjerovatnoću je moguće proračunati korišćenjem sljedećeg matematičkog zapisa [19]:

$$p_i = \frac{prob_i}{\sum_{i=1}^{SN} prob_i} \tag{4.4}$$

Veći broj pčela promatrača će "posjećivati" onaj izvor ćija je vjerovatnoća, proračunata formulom (4.4), veća. Algoritam ABC metoda se može predstaviti i pomoću dijagrama toka (slici 4.1) [19].

Slika 4.1 Dijagram toka algoritma ABC metoda

Na osnovu datih jednačina, ali i prikaza dijagrama toka, u nastavku su data dva pseudo koda za realizaciju posmatranog algoritma ABC metoda [20]:

Algoritam 1 Pseudo kod prve implementacije ABC metoda

```
Podaci: Postavka kontrolnih parametara ABC metode
SN: Broj izvora hrane
limit: Maksimalni broj napuštenih izvora hrane
MFE: Maksimalni broj evaluacija profitabilne funkcije
Započni
  // Inicijalizacija;
  br_evaluacija \leftarrow 0;
  \mathbf{Za} \ i = 1 \ do \ SN \ odradi
    X(i) \leftarrow nasumični izbor izvora hrane – jednačina (1)
    f_i \leftarrow f(X(i));
    napušteni_izvori(i) \leftarrow 0;
    br_evaluacija + +;
  Kraj
  Ponavljaj
      // Faza pčela izviđača;
     Za i = 1 do SN odradi
         x' \leftarrow pronalazak susjedne teritorije sa izvorom hrane – jednačina (2)
         f(x') \leftarrow istraživanje nove teritorije
         br_evaluacija + +;
         Ako je f(x') < f_i onda
           X(i) \leftarrow x'; f_i \leftarrow f(x'); napušteni_izvori(i) \leftarrow 0;
         U suprotnom
           napušteni_izvori(i) \leftarrow napušteni_izvori(i) + 1;
         Kraj
         Ako je br evaluacija == MFE onda
            Pamćenje najboljeg izvora hrane i prekid glavnog Ponavljanja
         Kraj
      Kraj
  Proračun vjerovatnoće p(i) svakog od izvora hrane – jednačine (3) i (4)
  // Faza pčela promatrača;
  i \leftarrow 1; j \leftarrow 1;
  Ponavljaj
     r \leftarrow rand(0,1);
      Ako je r < p(i) onda
        j \leftarrow j + 1;
        x' \leftarrow pronalazak susjedne teritorije sa izvorom hrane – jednačina (2)
        f(x') \leftarrow istraživanje nove teritorije
         br_evaluacija + +;
      Ako je f(x') < f_i onda
        X(i) \leftarrow x'; f_i \leftarrow f(x'); napušteni_izvori(i) \leftarrow 0;
      U suprotnom
         napušteni_izvori(i) \leftarrow napušteni_izvori(i) + 1;
      Kraj
```

```
Ako je br_evaluacija == MFE onda
        Pamćenje najboljeg izvora hrane i prekid glavnog Ponavljanja
     Kraj
  Kraj
i \leftarrow (i \mod SN) + 1;
Dok je j = SN;
  // Faza skauta:
  max_NI \leftarrow \{i: napušteni_izvori(i) = max(napušteni_izvori)\};
  Ako je napušteni_izvori(max_NI) \geq limit onda
     X(max_NI) \leftarrow nasumični izbor izvora hrane - jednačina (1)
     f_{max NI} = f(X(max_NI));
     br evaluacija + +:
     napušteni_izvori(i) \leftarrow 0;
     Ako je br_evaluacija == MFE onda
        Pamćenje najboljeg izvora hrane i prekid glavnog Ponavljanja
     Kraj
  Kraj
  Pamćenje najboljeg izvora hrane do sada pronađenog
```

```
Kraj
```

Algoritam 2 Pseudo kod druge implementacije ABC metoda

```
Podaci: Postavka kontrolnih parametara ABC metoda
SN: Broj izvora hrane
limit: Maksimalni broj napuštenih izvora hrane
MBI: Maksimalni broj iteracija
Započni
  // Inicijalizacija;
  br_evaluacija \leftarrow 0;
  \mathbf{Za} \ i = 1 \ do \ SN \ \mathbf{odradi}
     X(i) \leftarrow nasumični izbor izvora hrane – jednačina (1)
     f_i \leftarrow f(X(i));
     napušteni_izvori(i) \leftarrow 0;
     br_evaluacija + +;
  Kraj
  iteracija \leftarrow 1;
  Sve dok je iteracija < MBI odradi
      // Faza pčela izviđača;
     max_NI \leftarrow \{i: napušteni_izvori(i) = max(napušteni_izvori)\};
      Za i = 1 do SN odradi
        Ako je (napušteni_izvori(i) < limit ili i ! = max_NI) onda
           x' \leftarrow pronalazak susjedne teritorije sa izvorom hrane – jednačina (2)
           f(x') \leftarrow istraživanje nove teritorije
           br_evaluacija + +;
           Ako je f(x') < f_i onda
```

```
X(i) \leftarrow x'; f_i \leftarrow f(x'); napušteni_izvori(i) \leftarrow 0;
            U suprotnom
              napušteni_izvori(i) \leftarrow napušteni_izvori(i) + 1;
           Kraj
         Kraj
      Kraj
      Pamćenje najboljeg izvora hrane do sada pronađenog
      // Faza skauta;
      Ako je napušteni_izvori(max_NI) \geq limit onda
         X(max_NI) \leftarrow nasumični izbor izvora hrane - jednačina (1)
        f_{max NI} = f(X(max_NI));
         br_evaluacija + +;
        napušteni_izvori(i) \leftarrow 0;
      Kraj
      Proračun vjerovatnoće p(i) svakog od izvora hrane – jednačine (3) i (4)
      // Faza pčela promatrača;
      i \leftarrow 1; j \leftarrow 1;
      Sve dok je j \leq SN odradi
         r \leftarrow rand(0,1);
         Ako je r < p(i) onda
           j \leftarrow j + 1;
           x' \leftarrow pronalazak susjedne teritorije sa izvorom hrane – jednačina (2)
           f(x') \leftarrow istraživanje nove teritorije
           br_evaluacija + +;
           Ako je f(x') < f_i onda
              X(i) \leftarrow x'; f_i \leftarrow f(x'); napušteni_izvori(i) \leftarrow 0;
           U suprotnom
              napušteni izvori(i) \leftarrow napušteni izvori(i) + 1;
           Kraj
        Kraj
        i \leftarrow (i \mod SN) + 1;
     Kraj
     Pamćenje najboljeg izvora hrane do sada pronađenog
     iteracija + +;
  Kraj
Kraj
```

4.2. GSA optimizacioni metod

GSA metod je prvi razvio Esmat Rashedi 2009. godine. Ovaj populacioni metod je zasnovan na dva Njutnova zakona, i to: Njutnov zakon gravitacije i drugi Njutnov zakon. Naime, fenomen gravitacione sile između svih tijela u univerzumu je objašnjen uz pomoć spomenuta dva Njutnova zakona. Naravno, što su dva tijela bliža jedno drugom i što su im mase veće to će između njih djelovati jača gravitaciona sila [21].

Naime, GSA metod se sastoji od niza agenata (tijela) različitih masa, koji se kreću jedno ka drugom usljed postojanja gravitacione sile među njima. Svakog od agenata definišu četri parametra, i to: pozicija, aktivna gravitaciona masa, pasivna gravitaciona masa i inertna masa [21]. Cilj ovog metoda jeste pronalazak optimalnog rješenja koje ujedno i predstavlja poziciju agenta. Parametri koji određuju kvalitet rješenja predstavljaju ubrzanje posmatranog agenta ka drugim agentima, kao i njegova masa.

U sljedećem potpoglavlju će biti detaljno objašnjen algoritam GSA metode, kao i njegov pseudo kod koji je iskorišćen u cilju implementacije istog.

4.2.1. Algoritam GSA metoda

Algoritam GSA metoda se temelji na dva Njutnova zakona, i to: Njutnov zakon gravitacije i drugi Njutnov zakon. Kao što je već rečeno, GSA metod je nastao posmatrajući fenomen postojanja gravitacione sile koja djeluje među dva tijela. Spomenuti metod se sastoji od skupa agenata (tijela) koje definešu četri parametra: pozicija, aktivna gravitaciona masa, pasivna gravitaciona masa i inertna masa. U cilju boljeg razumijevanja algoritma GSA metoda najprije je potrebno definisati korišćene termine. Naime, u teorijskoj fizici su definisane tri vrste masa:

 Aktivna gravitaciona masa, koja predstavlja mjeru jačine gravitacionog polja usljed prisustva određenog tijela. Iz navedene definicije proizilazi da će djelovati jača gravitaciona sila između tijela sa većim aktivnim gravitacionim masama.

 Pasivna gravitaciona masa, koja se odnosi na mjeru jačine interakcije gravitacionih sila među tijelima. Drugim riječima, ako posmatramo dva tijela koja stvaraju iste gravitacione sile, to će na tijelo sa većom pasivnom gravitacionom masom djelovati veća gravitaciona sila kojom drugo tijelo djeluje na njega.

- Inertna masa, koja predstavlja mjeru otpornosti tijela ka promjeni stanja mirovanja kada se na njega djeluje nekom silom. U skladu sa navedenim, ako na dva tijela istih aktivnih i pasivnih gravitacionih masa, a različitih inertnih masa, djelujemo silama istog intenziteta to će se tijelo sa većom inertnom masom sporije kretati od tijela sa manjom inertnom masom.

Pozicija agenta odgovara optimizacionom rješenju, dok su njegove gravitacione mase i inertna masa računate korišćenjem *fitnes* funkcije [6]. GSA metod do kraja svog proračuna pronalazi agenta sa najvećom masom, koji djeluje na ostale agente gravitacionom silom najvećeg intenziteta. Upravo takav agent prestavlja optimalno rješenje postavljenog problema.

Posmatrajmo sistem od *N* agenata. Sada se može definisati pozicija *i*-tog agenta kao [21]:

$$x_i = (x_i^1, \dots, x_i^d, \dots, x_i^n), \text{ za } i = 1, 2, \dots, N$$
 (4.5)

gdje je x_i^d pozicija *i*-tog agenta u *d*-toj dimenziji.

Za neki trenutak t, definiše se gravitaciona sila kojom agent j djeluje na agenta i [21]:

$$F_{ij}^{d}(t) = G(t) \frac{M_{pi}(t) \cdot M_{aj}(t)}{R_{ij}(t) + \varepsilon} (x_{j}^{d}(t) - x_{i}^{d}(t))$$
(4.6)

pri čemu je $M_{pi}(t)$ pasivna gravitaciona masa agenta *i* u trenutku *t*, $M_{aj}(t)$ aktivna gravitaciona masa agenta *j* u trenutku *t*, G(t) gravitaciona konstanta za trenutak *t*, ε mala konstanta koja ne zavisi od vremena i $R_{ij}(t)$ rastojanje između agenata *i* i *j* koje je definisano izrazom [21]:

$$R_{ij}(t) = \| x_i(t), x_j(t) \|_2$$
(4.7)

Ukupna sila kojom svi agenti djeluju na agenta *i* u *d*-toj dimenziji se može predstaviti kao suma nasumičnih težišnih sila kojim ostali agenti djeluju na istog. Drugim riječima, definiše se funkcija [21]:

$$F_{i}^{d}(t) = \sum_{j=1, j \neq i}^{N} rand_{j}F_{ij}^{d}(t)$$
(4.8)

gdje $rand_j$ predstavlja nasumičan broj u intervalu [0, 1].

Sa druge strane, drugi Njutnov zakon se odnosi na ubrzanje agenta *i* u trenutku vremena *t*, u pravcu dimenzije *d*, pod uticajem sile F_i^d i njegove inertne mase M_{ii} . Matematički zapis ovog zakona ima oblik [21]:

$$a_{i}^{d}(t) = \frac{F_{i}^{d}(t)}{M_{ii}(t)}$$
(4.9)

S obzirom da je posmatrani agent *i* dobio ubrzanje a_i^d , usljed prisustva gravitacionih sila okolnih agenata, to će se njegova brzina promjeniti u odnosu na posmatrani trenutak. Nova brzina posmatranog agenta se proračunava izrazom [21]:

$$v_i^d(t+1) = rand_i \cdot v_i^d(t) + a_i^d(t)$$
(4.10)

odnosno, pozicija posmatranog agenta će se promijeniti po zakonu [21]:

$$x_i^d(t+1) = x_i^d(t) + v_i^d(t)$$
(4.11)

gdje je $rand_i$ uniformna nasumična varijabla čija vrijednost ne prevazilazi dijapazon od [0, 1].

Sa druge strane, bitno je ne izostaviti gravitacionu konstantu G(t). Ova konstanta ima veliki značaj za GSA metod. Naime, njena vrijednost se smanjuje u zavisnosti od rezultata koji ovaj metod dobije, dok u početku ima inicijalnu

vrijednost G_0 . Upravo ovakav pristup dovodi do preciznog rješenja. Uzimajući u obzir ovakav pristup, to se gravitaciona konstanta G(t) definiše kao funkcija koja zavisi isključivo od njene početne vrijednosti G_0 i posmatranog trenutka t. Odnosno, matematičkim jezikom se gravitaciona konstanta opisuje [21]:

$$G(t) = G(G_0, t)$$
 (4.12)

Gravitacione mase i inertna masa svakog agenta se proračunavaju koristeći *fitnes* funkciju. Ovim metodom će bolje rješenje biti pozicija onog agenta čija je masa veća. Jasno je da će ovakavim pristupom problema bolje rješenje imati onaj agent koji ima veće sposobnosti privlačenja, a koji se pritom sporije kreće. Međutim, u radu [22] je naglašeno da se gravitacione mase i inertna masa mogu posmatrati kao jedno. Ako se u pristupu ovog metoda uzme pretpostavka jednakosti aktivne gravitacione, pasivne gravitacione i inertne mase, kao što predlaže spomenuti rad, to onda važe sljedeće jednakosti [21]:

$$M_{ai} = M_{pi} = M_{ii} = M_i$$
, za $i = 1, 2, ..., N$ (4.13)

$$m_{i}(t) = \frac{fit_{i}(t) - najgore(t)}{najbolje(t) - najgore(t)}$$
(4.14)

$$M_{i}(t) = \frac{m_{i}(t)}{\sum_{j=1}^{N} m_{j}(t)}$$
(4.15)

gjde $fit_i(t)$ predstavlja vrijednost *fitnes* funkcije posmatranog agenta *i* u vremenskom trenutku *t*, a *najbolje*(*t*), odnosno *najgore*(*t*), predstavlja skup rješenja funkcije cilja koja je definisana sljedećim jednačinama [21]:

$$najbolje(t) = \min_{j \in \{1,2,\dots,N\}} fit_j(t)$$
(4.16)

$$najgore(t) = \max_{j \in \{1, 2, \dots, N\}} fit_j(t)$$
(4.17)

Naravno jednačine (4.16) i (4.17) se odnose na optimizacione probleme gdje je cilj optimizacije minimizovati objektivnu funkciju.

Posmatrajući jednačinu (4.8) čitalac može zaključiti da će se ovaj metod u jednom trenutku "zakočiti" na lokalnom optimumu, gdje će se zaustaviti sa svojom potragom za globalnim rješenjem. Upravo razlog ovakvom ponašanju GSA metode, jeste nesposobnost algoritma da razluči granice između pojmova istraživanje i eksploatacija u posmatranom prostoru. Drugim riječima, jednačina (4.8) posmatra svakog agenta kao tijelo sposobno da privlači ostale agente. Međutim, ovaj pristup nije najkorektniji iz prostog razloga što bi istu mogućnost privlačenja imao agent male mase nad agentima većih masa. U cilju izbjegavanja navedenog problema, to je potrebno da s vremenom opada broj pronalazaka novih agenata, a u isto vrijeme se povećava posmatranje do tada odabranih agenata. U skladu sa navedenim, uvodi se nova funkcija *Knaj* koja

predstavlja one agente za koje se smatra da jedini imaju sposobnost za privlačenjem ostalih agenata. Funkcija Knaj u početku ima svoju početnu vrijednost K_0 , koja s vremenom opada. Uzimajući u obzir navedeno, jednačina (4.8) dobija novi oblik [21]:

$$F_i^d(t) = \sum_{j \in Knaj, j \neq i}^N rand_j F_{ij}^d(t)$$
(4.18)

gdje *Knaj* predstavlja skup *K* agenata sa najboljom vrijednošću *fitnes* funkcije, ali i onih sa najvećim masama.

Algoritam GSA metoda se može predstaviti i pomoću dijagrama toka. Upravo navedeni dijagram je prikazan na slici 4.2 [23].

Slika 4.2 Dijagram toka algoritma GSA metoda

Na osnovu jednačina (4.5)-(4.18) u nastavku je dat pseudo koda za realizaciju algoritma GSA metoda [24]:

Algoritam 3 Pseudo kod implementacije GSA metoda

Podaci: Postavka kontrolnih parametara GSA metoda Nasumično generisanje M mogućih rješenja

Započni

```
Dok krajnji kriterijum nije zadovoljen;
     Određivanje najboljeg i najgoreg rješenja u zavisnosti od fitnes funkcije
     Za i = 1 do M odradi
        Proračun inertne mase za agenta j
     Kraj
     \mathbf{Za} \ i = 1 \ do \ M \ odradi
        \mathbf{Za} r = 1 \ do \ M \ \mathbf{odradi}
           Proračun rastojanja između agenata j i r
           Za i = 1 do M odradi
              Proračun sile kojom agent r djeluje na j u dimenziji i
           Kraj
        Kraj
        Ažuriranje brzine i ubrzanje agenta j
        Pomjeranje agenta j na novu poziciju
     Kraj
     Ažuriranje gravitacione konstante G
  Kraj
  Prikaz svih rješenja
Kraj
```

4.3. WDO optimizacioni metod

WDO metod su prvi razvili Zikri Baryaktar i Jeremy A. Bossard 2013. godine. Ovaj metod je inspirisan kretanjem vjetra, koji teži za izjednačavanjem atmosferskog pritiska [25]. Naime, WDO metod "dijeli" vjetar na više cjelina. Svaka cjelina predstavlja moguće rješenje optimizacionog problema. Dva parametra koja karakterišu kvalitet rješenja su njihova pozicija i brzina kojom se kreću u atmosferi. Sa druge strane, parametar koji odlučuje koje rješenje ima najoptimalniju vrijednost jeste njihov vazdušni pritisak. Vrijednost navedenih parametara dosta zavise od sila koje djeluju na njih. U cilju kvalitetne realizacije WDO metoda uzete su obzir sile koje imaju najveći uticaj na stvarno kretanje vjetra.

U nastavku ovog poglavlja su detaljno objašnjeni navedeni parametri i njihov proračun. Takođe je prikazan matematički model WDO metoda kao i pseudo kod analiziranog metoda.

4.3.1. Algoritam WDO metode

Algoritam WDO metode je nastao posmatranjem kretanja vjetra. Tradicioalno predstavljanje kretanja vazduha je modelovano jednim od sljedeća dva modela: Lagranžov model i Ojlerov model [26]. Naime, u Lagranžovom modelu vazduh je posmatran kao skup beskonačno malih djelova fluida [27, 28]. Ovakav pristup se može opisati drugim Njutnovim zakonom. Sa druge strane, Ojlerov model posmatra vazduh kao jedan kontinualni sistem [26, 27]. Ovakvo posmatranje kretanja vazduha se može poistovijetiti sa kretanjem fluida.

Tradicionalni modeli koji opisuju ketanje vjetra, a u svrhu rješavanja problema optimizacije, se mogu iskoristiti samo za rješavanje trodimenzionih problema. Međutim, potrebno je napraviti algoritam koji će imati mogućnost rješavanja problema optimizacije u *N*-dimenzionom prostoru. U tom smislu, razvijen je Lagranžov model posmatranja kretanja vazduha u atmosferi, koji je prilagođen rješavanju *N*-dimenzionih problema optimizacije, i kao takav nazvan WDO metodom.

Analiza kretanja vjetra po Lagranžovom modelu započinje drugim Njutnovim zakonim koji nudi precizne rezultate o trajektoriji kretanja vjetra [27, 29, 30]. Dakle, drugi Njutnov zakon definiše pravac i smjer kretanja vjetra. Drugim riječima, ako se na dio fluida djeluje silom F_i to će posmatrani dio fluida dobiti ubrzanje a i kretaće se u pravcu i smjeru rezultantne sile. Drugi Njutnov zakona je moguće matematički predstaviti kao:

$$\rho a = \sum_{i=1}^{4} F_i$$
 (4.19)

pri čemu ρ predstavlja gustinu vazduha za posmatrani dio fluida. U jednačini (4.19) su računate četri osnovne sile koje mogu uticati na putanju, ali i na brzinu kretanja vjetra. Sila gradijenta pritiska (F_{gp}) predstavlja silu koja ima najveći uticaj na kretanje vjetra, a čiji matematički zapis ima oblik [31]:

$$F_{gp} = -\nabla P \cdot V \tag{4.20}$$

gdje ∇P predstavlja gradijent pritiska, koji je ujedno u trodimenzionom prostoru definisan kao $\nabla P = \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z}\right)$ [32]. Sljedeća sila koja je uzeta u obzir u jednačini (4.19) je sila trenja (F_{tr}). Sila trenja predstavlja silu koja se protivi kretanju dijela vazduha usljed dejstva sile gradijenta pritiska. Zbog velike kompleksnosti matematičkog zapisa sile trenja u atmosferi, to je u ovom radu prikaza uproštena verzija istog [31]:

$$F_{tr} = -\rho\beta u \tag{4.21}$$

pri čemu β predstavlja koeficient trenja, a u vektor brzine vjetra. Treća sila razmatrana u relaciji (4.18) je gravitaciona sila (F_{gr}). Smjer gravitacione sile u trodimenzionom prostoru je definisan ka centru Zemlje. Međutim, u cilju postizanja metode za rješavanja N-dimenzionog problema potrebno je prilagoditi ovakvo posmatranje gravitacione sile. U tom smislu, posmatrajmo Dekartov pravougli koordinatni sistem. Ako se za takav sistem postavi centar Zemlje u koordinatnom početku, onda je moguće posmatrati gravitacionu silu u N-dimenzionom prostoru. U ovom slučaju, gravitaciona sila je uvijek usmjerena ka koordinatnom početku. Uprošteni matematički zapis gravitacione sile je [28]:

$$F_{gr} = \rho V g \tag{4.22}$$

gje *g* predstavlja gravitaciono ubrzanje. S obzirom da se Zemlja okreće oko svoje ose, to se ne smije zanemariti uticaj Koriolisove sile (F_{ko}) [33], koja ujedno predstavlja četvrtu silu iz jednačine (4.19). Naime, fenomen skretanja vjetra u atmosferi je upravo posljedica postojanja Koriolisove sile [30]. Koriolisova sila se u WDO metodi podrazumijeva da je jednodimenziona veličina koja svakom iteracijom uzima novu nasumičnu vrijednost i u tom pravcu utiče na kretanje vjetra. Koriolisova sila se definiše kao [26]:

$$F_{ko} = -2\Omega \times u \tag{4.23}$$

pri čemu Ω predstavlja rotaciju Zemlje. Naravno, važno je naglasiti da postoje i druge sile koje imaju uticaj na kretanje vjetra. Međutim, u implementaciji WDO metoda uzete su u obzir samo gore navedene četri sile.

Prije uvrštavanja relacija (4.20)-(4.23) u jednačinu (4.19) potrebno je definisati vezu vazdušnog pritiska sa gustinom vazduha i temperaturom, s obzirom da navedene veličine imaju značajnu ulogu u analizi kretanja vjetra u atmosferi. Upravo, zakon koji definiše vezu vazdušnog pritiska sa gustinom vazduha i temperaturom sredine se naziva zakonom idealnih gasova. Zakon idealnih gasova ima matematički zapis:

$$P = \rho RT \tag{4.24}$$

gdje je *P* vazdušni pritisak, *R* univerzalna gasna konstanta, a *T* temperatura sredine. Nakon definisanja četri sile koje utiču na pravac i brzinu kretanja vjetra (relacije (4.20)-(4.23)) moguće je proširiti jednačinu (4.19). Drugim riječima, drugi Njutnov zakon za kretanje vazduha se može zapisati kao:

$$\rho a = F_{gp} + F_{tr} + F_{gr} + F_{ko} \tag{4.25}$$

Sa druge strane, ako se ubrzanje zapiše kao količnik brzine i vremena, i ako se uzmu u obzir jednačine (4.20)-(4.23), tada relacija (4.25) dobija oblik:

$$\rho \frac{\Delta u}{\Delta t} = (-\nabla P \cdot V) + (-\rho \beta u) + (\rho V g) + (-2\Omega \times u)$$
(4.26)

U cilju uprošćenja jednačine (4.26), potrebno je postaviti dvije pretpostavke: vremenski interval Δt i zapremina dijela vjetra *V* su jednaki jedinici. S obzirom da se smatra da je dio vazduha beskonačno mala veličina, to je pretpostavka za zapreminu istog opravdana. Uvažavajući navedene pretpostavke, moguće je dalje uprostiti relaciju (4.26):

$$\rho\Delta u = (-\nabla P) + (-\rho\beta u) + (\rho g) + (-2\Omega \times u)$$
(4.27)

Uvažavajući zakon idealnih gasova (relacija (4.24)), moguće je predstaviti gustinu vazduha ρ uz pomoć vazdušnog pritiska P, temperature sredine T i univerzalne gasne konstante R:

$$\rho = \frac{P}{RT} \tag{4.28}$$

Uvrštavanjem jednačine (4.28) u (4.27), dobija se konačna relacija koja predstavlja vektor brzine kretanja vjetra:

$$\frac{P_{tren}}{RT}\Delta u = (-\nabla P) + \left(-\frac{P_{tren}}{RT}\beta u\right) + \left(\frac{P_{tren}}{RT}g\right) + (-2\Omega \times u) / \cdot \left(\frac{RT}{P_{tren}}\right)$$
(4.29)
$$\Delta u = g - \beta u - \frac{RT}{P_{tren}}[\nabla P + (2\Omega \times u)]$$
(4.30)

Posmatrajući relacije (4.29) i (4.30) može se uočiti mala promjena u označavanju vazdušnog pritiska (P_{tren}). Naime, u ovom slučaju P_{tren} označava vazdušni pritisak jednog dijela vjeta za njegovu trenutnu poziciju. S obzirom da su vrijednosti brzine i pozicije posmatranog dijela vjetra ažurirani tokom svake iteracije, onda se promjena brzine Δu može zapisati kao $\Delta u = u_{novo} - u_{tren}$. Odnosno, iz jednačine (4.30) moguće je izraziti brzinu posmatranog dijela vjetra u sljedećoj iteraciji (u_{novo}):

$$u_{novo} = g + (1 - \beta)u_{tren} - \frac{RT}{P_{tren}} [\nabla P + (2\Omega \times u)]$$
(4.31)

Posmatrajući jednačinu (4.31) može se primijetiti da su g i ∇P jedine dvije veličine kod kojih se ne može uočiti njihova zavisnost od brzine ili pozicije dijela vjetra. U skladu sa navedenim, nije moguće smatrati relaciju (4.31) konačnom. Naime, gravitaciona sila djeluje na posmatrani dio vjetra tako da ga dovede do koordinatnog početka (centra Zemlje).

Gravitaciono ubrzanje *g* kod WDO metode je jednako proizvodu njegove apsolutne vrijednosti i razlike pozicije posmatranog dijela vjetra i koordinatnog početka. Odnosno, u WDO metodi gravitaciono ubzanje se matematički zapisuje:

$$g = |g| \cdot (0 - x_{tren}) \tag{4.32}$$
gdje x_{tren} predstavlja trenutnu poziciju posmatranog dijela vjetra. S druge strane, matematički zapis gradijenta pritiska u WDO metodi glasi:

$$\nabla P = |P_{opti} - P_{tren}| \cdot (x_{opti} - x_{tren})$$
(4.33)

pri čemu je P_{opti} pritisak najoptimalnijeg dijela vjetra, a x_{opti} pozicija najoptimalnijeg dijela vjetra do sada pronađen. Uvrštavanjem jednačina (4.32) i (4.33) u relaciju (4.31) dobija se konačni oblik kakav koristi WDO metod za proračun brzine posmatranog dijela vjetra u sljedećoj iteraciji:

$$u_{novo} = -gx_{tren} + (1 - \beta)u_{tren} - \frac{RT}{P_{tren}} [|P_{opti} - P_{tren}| \cdot (x_{opti} - x_{tren}) + (cu_{tren}^{dr.dim.})]$$
(4.34)

gdje je $u_{tren}^{dr.dim.}$ brzina generisana u nasumičnom smjeru i koja simulira dejstvo Koriolisove sile na posmatrani dio vjetra, a *c* konstanta čija je vrijednost jednaka $2|\Omega|$. Naravno, na početku WDO metode neopodno je definisati vrijednosti konstanti *g*, β , *RT* i *c*.

Preostalo je još samo da se definiše matematička formulacija pozicije posmatranog dijela vjetra u sljedećoj iteraciji. Naime, matematički zapis nove pozicije dijela vjetra je:

$$x_{novo} = x_{tren} + (u_{novo}\Delta t) \tag{4.35}$$

U cilju sprečavanja dijela vjetra da preskoči optimalno rješenje po prelasku na sljedeću iteraciju, to je promjena pozicije posmatranog dijela vjetra u toku jedne iteracije ograničena u opsegu [-1, 1]. Sa druge strane, ako proračunata vrijednost brzine u nekom pravcu prevaziđe dozvoljene granice, onda WDO metod koriguje dobijenu vrijednost brzine, tj. postavlja je na maksimalnu, odnosno minimalnu vrijednost dozvoljene brzine, u zavisnosti od proračunate vrijednosti. Drugim riječima, vrijednost brzine za sljedeću iteraciju se koriguje po sljedećoj zakonitosti:

$$u_{novo}^{kor} = \begin{cases} u_{max}, & za \ u_{novo} > u_{max} \\ -u_{max}, & za \ u_{novo} < u_{max} \\ u_{novo}, za \ -u_{max} \le u_{novo} \le u_{max} \end{cases}$$
(4.36)

Jednačine (4-19)-(4.36) predstavljaju matematički model WDO metod. Zbog veće preglednosti, u nastavku će biti prikazan dijagram toka algoritma WDO metoda, kao i pseudo kod istog. Algoritam WDO metoda je prikazan pomoću dijagrama toka na slici 4.3 [31].

Slika 4.3 Dijagram toka algoritma WDO metoda

U skladu sa matematičkim modelom i dijagramom toka WDO metoda prikazanih u ovom potpoglavlju, realizovan je pseudo kod analizirane optimizacione metode:

Algoritam 3 Pseudo kod implementacije WDO metoda

```
Podaci: Inicijalizacija ulaznih parametara WDO metoda

brPop: Broj populacija

iterMax: Maksimalni broj iteracija

g, \beta, RT i c: Konstante koje se pojavljuju u WDO metodi

maxV: Maksimalna dozvoljena brzina

Nasumično generisanje pozicije i brzine

Započni

Za i = 1 do maxPop

Inicijalizacija vazdušnog pritiska za datu objektivnu funkciju

Kraj
```

Pronalazak najboljeg dijela vjetra za inicijalni vazdušni pritisak **Sve dok je** *iter < iterMax* **odradi**

 $\mathbf{Za} \ i = 1 \ do \ maxPop$

Odabir nasumične dimenzije

Odabir brzine u zavisnosti od dobijene dimenzije

Kraj

Provjera da li je vrijednost brzine u dozvoljenom opsegu Ažuriranje pozicija djelova vjetra

Kraj

Pronalazak i štampanje dijela vjetra sa najmanjim vazdušnim pritiskom.

Kraj

4.4. PSO optimizacioni metod

James Kennedy i Russell Eberhart su osmislili i razvili PSO metod 1995. godine. PSO metod je inspirisan kretanjem ptica u potrazi za hranom, koji je kasnije poistovjećen kretanjem čestica po kojem metod i dobija naziv. Ovaj metod je nastao u cilju pronalazka optimizacione metode, koja nije matematički zahtjevna, ali dovoljno dobra u rješavanju složenih problema. U nastavku ovog poglavlja je detaljno prikazana formulacija PSO metode, ali i dijagram toka algoritma iste i njen pseudo kod.

4.4.1. Algoritam PSO metode

Prilikom razvijanja PSO metoda, J. Kennedy i R. Eberhart su željeli da naprave metod za rješavanje optimizacionih problema koji mogu rješavati zahtjevne optimizacije, a da je pritom njegov matematički model jako jednostavan i ne zahtijeva veliku memoriju računara [34]. Upravo ovakav pristup razvijanja PSO metoda ga čini jednim od najpopularnijih metoda za rješavanje optimizacionih problema. PSO metod je prvenstveno nastao kao rješenje za brzo i efikasno treniranje neuralnih mreža [34], ali je ubrzo počeo da se koristi i za rješavanje optimalnih problema iz drugih oblasti nauke. Efikasnost PSO metode u rješavanju optimizacionih problema je testiran na Skaferovu f6 funkciju (engl. *Schaffer's f6 function*) koju je prvi predstavio Davis u radu [35].

PSO metod je inspirisan kretanjem ptica u potrazi za hranom. Prije razvoja PSO metode postojali su radovi koji su opisivali kretanje ptica [36, 37]. Naime, Reynolds je u radu [36] opisao kretanje ptica inspirisan "koreografijom" istih prilikom njihovog letenja, dok su sa druge strane Hepper i Grenander [37] željeli pronaći pravila na osnovu kojih je moguće opisati sinhronizovano kretanje velikog broja ptica, kao i razlog njihovog iznenadnog mjenjanja pravca prilikom kretanja.

U cilju realizacije PSO metoda, prvo je potrebno izdijeliti prostor u kojem se vrši potraga za optimalnim rješenjem na kvadrate istih dimenzija. Zatim se izvršava nasumična inicijalizacija pozicija posmatranih ptica u izdijeljenim kvadratima. Svaki kvadrat u kojem se nalazi ptica sadrži brzinu po X i Y osi. Prlikom svake iteracije posmatrana ptica se kreće ka najbližoj ptici, od koje preuzima X i Y brzinu. Upravo ovakvo pravilo kretanja čini sinhrono kretanje velikog broja ptica. Međutim, ovakav opis kretanja ptica nema mogućnost mijenjanja pravca kretanja istih. Uvažavajući navedeno, nameće se mogućnost pronalaska optimalnog rješenja samo na prvobitno postavljenim pozicijama, a samim tim nedostatak ispitivanja drugih pozicija. S tim u vezi, definisana je nova varijabla nasumične vrijednosti koja se mijenja u svakoj iteraciji, a pritom doprinosi mijenjanju brzina po X i Y osi svim pticama. Vrijednost X i Y brzine utiču samo na smjer kretanja posmatrane ptice.

U svakom trenutku sve ptice znaju vrijednost i poziciju najboljeg do sada pronađenog rješenja. U ovom radu vrijednosti X i Y pozicije kao i vrijednosti najboljeg rješenja do sada pronađenog su označene sa pNajX[], pNajY[] i pNaj[], respektivno. Naravno, u zavisnosti od položaja najboljeg rješenja potrebno je prilagoditi brzinu posmatrane ptice kako bi se ista kretala ka najboljem rješenju. Ovo je moguće postići korišćenjem sljedeće relacije [34]:

Ako je
$$trenutnoX[] > pNajX[gNaj]$$
 onda vX[]

$$= vX[] - rand() * g_{incr} Kraj$$
Ako je $trenutnoX[] < pNajX[gNaj]$ onda vX[]

$$= vX[] + rand() * g_{incr} Kraj$$
Ako je $trenutnoY[] > pNajY[gNaj]$ onda vX[]

$$= vY[] - rand() * g_{incr} Kraj$$
Ako je $trenutnoY[] < pNajY[gNaj]$ onda vX[]

$$= vY[] + rand() * g_{incr} Kraj$$

pri čemu *trenutnoX*, odnosno *trenutnoY*, predstavljaju trenutnu poziciju po X, odnosno Y, osi posmatrane ptice. gNaj je pozicija globalnog optimuma koji je do sada pronađen, a vX[] i vY[] predstavljaju brzine po X i Y osi. U relaciji (4.37) nasumična vrijednost je određena pomoću ugrađene rand() funkcije, dok g_{incr} predstavlja sistemski parametar.

U cilju korišćenja PSO metoda za rješavanje multi dimenzionih problema, potrebno je proširiti vektore trenutnoX[], trenutnoY[], vX[] i vY[] u matrice, pri čemu sada proširene matrice sadrže onoliko kolona koliki je red dimenzije posmatranog optimizacionog problema. S druge strane, jednačina (4.37) se može uprostiti ako se predstavi sljedećim zapisom:

$$vX[] = vX[] + rand() * g_{incr} * (pNajX[gNaj] - trenutnoX[])$$
(4.38)

Optimizacioni metod analiziran u ovom poglavlju (PSO metod) se može predstaviti i pomoću dijagrama toka, prikazanog na slici 4.4 [38].

Slika 4.4 Dijagram toka algoritma PSO metoda

Kao i kod prethodnih populacionih metoda, i kod ove metode je na posljetku prikazan pseudo kod implementacije PSO metode [39].

Algoritam 4 Pseudo kod implementacije PSO metoda

```
Podaci: Inicijalizacija ulaznih parametara WDO metoda
brPop: Broj populacija
populacija \leftarrow 0;
gNaj \leftarrow 0;
Započni
   Sve dok je populacija ← brPop odradi
       brzina ← nasumičnaBrzina();
       pozicija \leftarrow nasumičnaPozicija();
       objFun \leftarrow obj(pozicija);
       pNaj \leftarrow pozicija;
       Ako je obj < pNaj onda
          pNaj \leftarrow pozicija;
          Ako je obj < gNaj onda
              gNaj \leftarrow pNaj
          Kraj
       Kraj
       populacija \leftarrow populacija + 1;
   Kraj
   Štampanje vrijednosti gNaj.
Kraj
```

5. PROGRAMSKI PAKET GAMS I UGRAĐENI SOLVER CONOPT

Kao što je već navedeno u nekom od prethodnih poglavlja ovog rada, veliki dio optimizacionih problema koji se javljaju u elektrotehnici su nelinearne prirode. U cilju efikasne optimizacije ovakvih problema potrebno je koristiti algoritam za nelinearno programiranje.

Programski paket GAMS sadži veliki broj solvera za rješavanje nelinearnih optimizacionih problema, a na koji je ujedno i fokusiran veliki dio ovog rada. Neki od najčešće korišćenih solvera za rješavanje nelinearnih optimizacionih problema unutar programskog paketa GAMS su: CONOPT, IPOPTH, KNITRO, MINOS, SNOPT, itd.

Ovo poglavlje je podijeljeno u dvije veće cjeline. Prvi dio se odnosi na programski paket GAMS, dok je drugi fokusiran na ugrađeni solver CONOPT unutar programskog paketa GAMS.

5.1. Programski paket GAMS

GAMS (engl. *General Algebraic Modeling System*) je programski paket koji se koristi za modelovanje i rješavanje optimizacionih problema [40]. Za rješavanje optimizacionih problema, navedeni programski paket koristi stabilne ugrađene solvere visokih performansi. Sa druge strane, programski paket GAMS omogućava rješavanje 15 tipova optimizacionih problema, i to [41]:

- ograničeni nelinearni sistem (engl. Constrained Nonlinear System -CNS) – karakteriše ga jednak broj promjenljivih varijabli i ograničenja posmatranog modela [42],
- diskontinualno nelinearno programiranje (engl. *Discontinuous Nonlinear Programming* - DNLP) – karakteriše ga nelinearni optimizacioni problem koji sadrži neprekidnu funkciju, kao što je absolutna vrijednost, ili minimalna i maksimalna vrijednost, a koja se može pojaviti kod kriterijumske funkcije i/ili ograničenja posmatranog modela [43],
- prošireno matematičko programiranje (engl. Extended Mathematical Programming - EMP) – predstavlja proširenje "jezika" algebarskog modelovanja; odnosno, omogućava automatsko preoblikovanje novih tipova modela [44],
- linearno programiranje (engl. Linear Programming LP) koristi se za rješavanje optimizacionih modela kod kojih su kriterijumska funkcija i ograničenja tipa jednakosti i tipa nejednakosti linearne funkcije [45],
- mješovito komplementarno programiranje (engl. *Mixed Complementarity Programming* - MCP) – koristi se za rješavanje kvadratnih, najčešće nelinearnih, optimizacionih modela koji sadrže komplementarna ograničenja [43],
- mješovito cjelobrojno programiranje (engl. Mixed Integer Programming -MIP) – odnosi se na optimizacioni model koji sadrži binarne i/ili

cjelobrojne varijable, a koji se ne može koristiti za rješavanje nelinearnih optimizacionih problema [43],

- mješovito cjelobrojno nelinearno programiranje (engl. Mixed Integer Nonlinear Programming - MINLP) – koristi se za rješavanje nelinearnih optimizacionih problema čiji model ima varijable diskretnih vrijednosti [43],
- mješovito cjelobrojno programiranje sa kvadratnim ograničenjima (engl. Mixed Integer Quadratically Constrained Programming - MIQCP) – rješavanje optimalnih problema čiji modeli sadrže kvadratne jednačine i varijable diskretnih vrijednosti [43],
- matematičko programiranje sa uravnoteženim ograničenjima (engl. Mathematical Programming with Equilibrium Constraints - MPEC) – namijenjen je za rješavanje modela koji se sastoje od tkz. ravnotežnih ograničenja, pod kojim spadaju varijacione nejednakosti i komplementarna ograničenja [46],
- nelinearno programiranje (engl. Nonlinear Programming NLP) mogućnost rješavanja optimizacionih problema čiji modeli sadrže samo neprekidne funkcije, ali ne sadrže diskretne varijable [43],
- programiranje sa kvadratnim ograničenjima (engl. Quadratically Constrained Programming - QCP) – rješavanje linearnih optimizacionih problema čija ograničenja u modelima sadrže kvadratne jednačine, ali ne sadrže varijable diskretnih vrijednosti [43],
- relaksirano mješovito cjelobrojno nelinearno programiranje (engl. Relaxed Mixed Integer Nonlinear Programming - RMINLP) – sličan MINLP-u s tom razlikom što su diskretne varijable relaksirane (relaksirane varijable ne moraju imati cjelobrojne vrijednosti) [43, 47],
- relaksirano mješovito cjelobrojno programiranje (engl. Relaxed Mixed Integer Programming - RMIP) – sličan MIP-u s tom razlikom što su diskretne varijable relaksirane [43],
- relaksirano mješovito cjelobrojno programiranje sa kvadratnim ograničenjima (engl. *Relaxed Mixed Integer Quadratically Constrained Programming* - RMIQCP) – sličan MIQCP-u s tom razlikom što su diskretne varijable relaksirane [43],
- relaksirano matematičko programiranje sa uravnoteženim ograničenjima (engl. *Relaxed Mathematical Programming with Equilibrium Constraints* RMPEC) – sličan MIQCP-u s tom razlikom što su varijable relaksirane [43].

U cilju rješavanja nekog od gore navedenih tipova optimizacionih problema, programski paket GAMS posjeduje preko 25 ugrađenih solvera. Neki od najčešće korišćenih solvera su:

- CPLEX, GUROBI, MOSEK, XPRESS rješavanje LP/MIP/QCP/MIQCP,
- CONOPT, IPOPTH, KNITRO, MINOS, SNOPT rješavanje NLP,
- ALPHAECP, ANTIGONE, BARON, DICOPT, OQNLP, SBB rješavanje MINLP.

Programski paket GAMS sadrži niz komandi pomoću kojih se pravi svaki model. Komande koje se koriste za izradu svakog optimizacionog modela unutar programskog paketa GAMS su: setovi (engl. *sets*), parametri (engl. *parameters*), skalari (engl. *scalars*), tabele (engl. *table*), varijable (engl. *variables*), jednačine (engl. *equations*), modeli (engl. *model*), rješavanje (engl. *solve*) i prikaz (engl. *display*). Naime, svaki optimizacioni model realizovan u programskom paketu GAMS se sastoji od tri dijela, i to: ulazne, strukturne i izlazne cjeline.

Ulaznu cjelinu čine setovi, parametri, skalari i tabele. Strukturni dio se sastoji od niza varijabli, jednačina, modela i rješavanja, dok izlazni dio čine komande kao što je komanda prikaz.

Setovi predstavljaju najnižu komandu u lancu komandi unutar paketa GAMS i služe kao indeksi ostalim komandama programskog (parametrima, varijablama i jednačinama). Svi ulazni podaci u GAMS-u se predstavljaju pomoću parametara i tabela. Naime, parametri se najčešće koriste za ulazne podatke koji imaju jedan indeks, dok za one koji imaju dva ili više indeksa se koriste tabele radi veće preglednosti. Uloga skalara je definisanje jednog realnog broja. Sve veličine koje GAMS proračunava u toku optimizacije se smještaju u varijablama. Relacije koje opisuju optimizacione modele (kriterijumska funkcija i ograničenja tipa jednakosti i nejednakosti) unutar programskog paketa GAMS su predstavljene uz pomoć komande jednačina. U zavisnosti od potrebe jednačina, GAMS omogućava generisanje onoliko modela koliko je potrebno korisniku, s tim što korisnik za svaki model bira jednačine koje ga čine. Nakon generisanja potrebnih modela moguće je započeti optimizaciju komandom rješavanje. Komanda rješavanje pruža mogućnost odabira kriterijumske funkcije i odabir željenog solvera. Nakon izvršenja optimizacije, potrebno je ispisati dobijene rezultate. Jedna od komandi koja omogućava ispis rezultata predstavlja komanda prikaz.

Pored navedenog, na slici 5.1 je prikazana struktura dva optimizaciona modela formulisana unutar programskog paketa GAMS. Dokument koji sadrži više od jednog optimizacionog modela se naziva projektom.

Slika 5.1 Struktura jednog projekta formulisanog u programskom paketu GAMS

Posmatrajući sliku 5.1 može se uočiti da se svaki projekat programskog paketa GAMS sastoji od dva ili više modela koji sadrže neke ili sve jednačine, ali samo jednu komandu rješavanje. Navedena osobina programskog paketa GAMS omogućava jednostavnu implementaciju više optimizacionih modela unutar jednog projekta, ali i upotrebu potrebnih modela bez ponovnog kreiranja novih projekta.

5.2. Integrisani solver CONOPT

U ovom radu je korišćen solver CONOPT za optimizaciju IEEE testnih sistema zbog njegove superiornosti u brzini konvergencije. Naime, ovo potpoglavlje je izdijeljeno u tri veće cjeline. Prva cjelina definiše solver CONOPT. Druga cjelina ovog potpoglavlja se bavi algorirtmom CONOPT solvera, dok treća cjelina prikazuje superiornost CONOPT-a u odnosu na ostale ugrađene solvere u GAMS-u sa stanovišta brzine konvergencije.

5.2.1. Definisanje CONOPT-a

CONOPT je algoritam koji je našao veliku primjenu u rješavanju *large-scale* nelinearnih optimizacionih problema (NLP). Ovaj algoritam je razvila Danska kompanija *ARKI Consulting & Development A/S*.

CONOPT je baziran na starom dokazanom *Generalized Reduced Gradient* metodi (GRG), koja se razvila krajem 70-ih godina prošlog vijeka, i kao takva našla veliku primjenu u rješavanju nelinearnih optimizacionih problema [48]. Originalni GRG metod se koristio pri optimizaciji modela visoke nelinearnosti. Sa druge strane, CONOPT predstavlja unaprijeđenu varijantu GRG metoda koji je našao veliku primjenu u rješavanju nelinearnih modela kod kojih je teško pronaći optimalno rješenje [49].

Poslednja verzija CONOPT solvera koju nude komercijalna okruženja kao što je programski paket GAMS je 3.10 (CONOPT3). Naime, programski paket GAMS nudi i stariju verziju ovog solvera poznatu pod nazivom CONOPT2. Ono što CONOPT3 čini superijornijim u odnosu na CONOPT2 jeste mogućnost rješavanja optimizacionih problema sekvencijalno kvadratnim programiranjem (SQP).

5.2.2. Algoritam solvera CONOPT

CONOPT je solver baziran na GRG metodi. Algoritam CONOPT solvera je objasnio i razvio Drud (1976, 1983, 1985, 1994, 1995, 1996, 2011).

Solver CONOPT-a je korišćen za optimizaciju nelinearnih problema čija je generalizovana postavka predstavljena sljedećim jednačinama:

$$\min f(x), \tag{5.1}$$

uvažavajući ograničenja:

$$c(x) = b, \tag{5.2}$$

$$l \le x \le u, \tag{5.3}$$

gdje su $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ i $c: \mathbb{R}^n \to \mathbb{R}^m$ dva puta neprekidno diferencijabilne funkcije, a $b \in \mathbb{R}^m$ i $l, u \in \mathbb{R}^n$ varijable koje ograničavaju posmatrani model. U razmatranom matematičkom modelu nelinearnog optimizacionog problema (5.1-5.3) uzete su pretpostavke da je $l_i < u_i$, i = 1, 2, ..., n i $n \ge m$.

Pretpostavimo da *x* sadrži *slack* i *artificial* varijable za sva ograničenja. Tada Jakobijan matrica tih ograničenja sadrži jediničnu matricu, pa prema tome svaka vrsta matrice je linearno nezavisna (sve su vrste nenulte). Slack varijabla je pozitivna varijabla koja se dodaje ograničenju tipa nejednakosti kako bi je transformisala u ograničenje tipa jednakosti. Drugim riječima, posmatrajmo ograničenje tipa nejednakosti: $Ax \le b$, i izaberemo $y \ge 0$ za slack varijablu. Tada se može pisati:

$$Ax \le b \Longrightarrow Ax - b \le 0, \tag{5.4}$$
$$y \ge 0 / (-1),$$

$$-y \le 0. \tag{5.5}$$

Kombinacijom jednačina (5.4) i (5.5), dobija se:

$$Ax - b = -y.$$

$$Ax + y = b.$$
 (5.6)

Odnosno,

Jednačine (5.4-5.6) približnije objašnjavaju primjenu *slack* varijabli. S druge strane, *artificial* varijable predstavljaju varijable koje se koriste u ograničenjima tipa jednakosti i ograničenjima tipa '>' nejednakosti kako bi se postiglo početno izvodljivo rješenje. Kako artificial varijable nemaju fizički smisao, to ih je potrebno ukloniti iz posmatranog modela čim je prije moguće.

CONOPT se sastoji od *m* nelinearnih ograničenja tipa c(x) = b koje služe za eliminicaju *m* varijabli u posmatranom optimizacionom modelu. Vektor *x* se zatim dijeli na dva subvektora: $x_b \in \mathbb{R}^m$ i $x_n \in \mathbb{R}^{n-m}$. Naime, sistem nelinearnih ograničenja c(x) = b se može pisati kao $x_b = c_1(x_n)$. Naravno, da bi se uspješno mogla izvršiti transformacija sistema ograničenja tipa jednakosti $c(x_b, x_n) = 0$ u sistem $x_b = c_1(x_n)$, to je potrebno da je rank Jakobijanove matrice $\partial c/\partial x_b$ jednak broju *m*. Takođe, neophodan uslov za izvršenje spomenute transformacije je da postoji skup (x_b^0, x_n^0) takav da zadovoljava sistem $c(x_b^0, x_n^0)$. Funkcija c_1 je diferencijabilna, a njen Jakobijan se može izračunati uz pomoć implicitne diferencijacije. Prema tome, važi jednačina:

$$\frac{\partial c}{\partial x}dx = \frac{\partial c}{\partial x_b}dx_b + \frac{\partial c}{\partial x_n}dx_n = 0,$$
(5.7)

odnosno:

$$\frac{\partial c_1}{\partial x_n} = \frac{\partial x_b}{\partial x_n} = -\left(\frac{\partial c}{\partial x_b}\right)^{-1} \frac{\partial c}{\partial x_n}.$$
(5.8)

Funkcija $x_b = c_1(x_n)$ se dobija rješavanjem nelinearnog sistema $c(x_b, x_n) = 0$, pri čemu su x_n i x_b poznate veličine. Prema navedenom, uvodi se objektivna funkcija koja se definiše:

$$f(x_b, x_n) = f(c_1(x_n), x_n) \triangleq F(x_n),$$
(5.9)

gdje je funkcija $F(x_n)$ diferencijabilna sa izvodom:

$$\frac{\partial F}{\partial x_n} = \frac{\partial f}{\partial x_b} \frac{\partial x_b}{\partial x_n} + \frac{\partial f}{\partial x_n} = \frac{\partial f}{\partial x_n} - \frac{\partial f}{\partial x_b} \left(\frac{\partial c}{\partial x_b}\right)^{-1} \frac{\partial c}{\partial x_n}.$$
 (5.10)

Uvažavajući navedeno, generalisana formulacija nelinearnog optimizacionog problema (5.1-5.3) se može preformulisati sljedećim jednačinama:

$$\min F(x_n) \tag{5.11}$$

Uvažavajući ograničenja:

$$x_b = c_1(x_n),$$
 (5.12)

$$l_b < x_b < u_b, l_n \le x_n \le u_n.$$
 (5.13)

U Tabeli 5.1 su prikazani glavni koraci koje koristi algoritam CONOPT solvera, a koje je predložio Drud (1994).

Tabela 5.1 Glavni koraci CONOPT algoritma predloženih od strane Drud-a (1994)

1.	Potraga za početnim rješenjem x_0 , za koje je model rješiv.								
2.	Proračun Jakobijanove matrice $\partial c / \partial x$								
3.	Razdvajanje varijable x na $x_b \in \mathbb{R}^m$ i $x_n \in \mathbb{R}^{n-m}$ tako da je postignut uslov $l_b < x_b < u_b$, a								
	za koje je submatrica $\partial c / \partial x_b$ nesingularna.								
4.	Proračun inverzne matrice submatrice $(\partial c / \partial x_b)^{-1}$								
5.	Potraga za Lagranžovim multiplikatorima tako da sistem ima rješenje: $(\partial c / \partial x_b)u =$								
	$-(\partial f/\partial x_b)$								
6.	Proračun gradijenta: $r = (\partial f / \partial x_n) + u(\partial c / \partial x_n)$								
7.	Proračun projekcije gradijenta h, tako da su zadovoljeni sljedeći uslovi:								
	$ (0, r_i > 0 \land x_{ni}^0 = u_{ni} $								
	$h_i = \{ 0, r_i < 0 \land x_{ni}^0 = l_{ni} \}$								
	$(r_i, u suprotnom)$								
8.	Ako je $h = 0$, optimizacija je završena								
9.	Odabir najbolje vrijednosti $\varepsilon > 0$ u svrhu minimizacije funkcije $F(x_n^0 + \varepsilon h)$ uvažavajući								
	sljedeće jednačine:								
	$(u_{ni}, x_{ni}^0 + \varepsilon h_i > u_{ni})$								
	1. $x_{mi} = \{ l_{ni}, x_{ni}^0 + \varepsilon h_i < l_{ni} \}$								
	$x_{ni}^{0} + \varepsilon h_{i}$, u suprotnom								
	2. Riješavanje jednačine $c(x_b, x_n) = b$ u zavisnosti od x_b ; drugim riječima,								
	izračunavanje $x_b = c_1(x_n)$								
	3. Računanje $F(x_n^0 + \varepsilon h) = f(x_h, x_n)$								
10	\dot{C} uvanie paibolieg rieženia u x^0 i vraćanje pa korak 2								

10. Čuvanje najboljeg rješenja u x^0 i vraćanje na korak 2

Radi boljeg pregleda, na slici 5.2 su prikazani koraci iz tabele 5.2 u obliku dijagrama toka.

Slika 5.2 Dijagram toka algoritma CONOPT solvera predloženog od strane Drud-a (1994)

5.2.3. Superiornost CONOPT-a u smislu vremena konvergencije

U ovom radu je korišćen CONOPT algoritam za rješavanje nelinearnog optimizacionog problema u elektroenergetskim sistemima po kriterijumu minimalnih aktivnih gubitaka u mreži i kriterijumu minimalnih troškova proizvodnje iz konvencijalnih elektrana. Pored mnogih solvera koje posjeduje programski paket GAMS za rješavanje nelinearnih optimizacionih problema, u ovom radu je upotrijebljen CONOPT zbog njegove superiornosti u pogledu vremena konvergencije.

Najčešće korišćeni algoritmi za nelinearno programiranje, koje nudi okruženje GAMS, su: CONOPT, SNOPT, KNITRO/ACTIVE i MINOS. Poređenje navedenih algoritama sa CONOPT-om u smislu brzine konvergencije na primjeru 17 *large scale* optimizacionih problema je prikazano u tabeli 5.2 [40].

Tabela 5.2 Poređenje CONOPT, SNOPT, KNITRO/ACTIVE i MINOS u smislu brzine konvergencije na primjeru 17 *large scale* optimizacionih problema

Naziv				•.	сри				
modela	n	me	mc	it	CON OPT	SNOPT	KNITRO/ ACTIVE	MINOS	
	1002	501	0	22	0.27	3.37	0.343	4.46	
	2002	1001	0	19	0.379	18.8	0.982	27.49	
TIANG	4002	2001	0	28	1.366	133.96	2.964	205.64	
	8002	4001	0	31	4.766	53.8	8.288	1024.63	
FLOW	1163	735	0	5	0.058	0.01	3.456	0.19	
FLOWO	1556	1005	0	7	0.078	0.01	7.017	0.25	
	4004	3000	0	33	0.232	0.92	46.793	5.29	
	6004	4500	0	38	0.525	1.86	79.314	12.87	
FUL	8004	6000	0	41	0.76	3.06	81.193	22.45	
	10004	7500	0	45	1.055	4.51	134.66	36.52	
	3003	2000	0	82	0.763	2.28	11.138	2.18	
CAT	6003	4000	0	81	2.136	8.75	33.039	9.06	
	9003	6000	0	32	1.242	20.47	37.491	20.73	
	2505	2000	0	21	0.109	0.05	1.893	0.09	
CONT	5005	4000	0	30	0.27	0.11	4.947	0.2	
CONT	7505	6000	0	31	0.48	0.27	8.573	0.69	
	10005	8000	0	33	0.767	0.44	15.245	1.33	
	Uk	upno vr	ijeme	[s]:	15.256	252.67	477.336	1374.07	

Iz tabele 5.2 se može primijetiti superiornost CONOPT algoritma u smislu brzine konvergencije ka optimalnom rješenju posmatranog problema. Upravo iz priloženog, u ovom radu je korišćen solver CONOPT. ı

6. OPTIMIZACIONI MODELI I GUI APLIKACIJA

U ovom poglavlju je opisana formulacija optimizacionih modela koji su se koristili prilikom izrade magistarske teze, ali i GUI aplikacija realizovane u programskom paketu MATLAB. Dakle, ovo poglavlje je podjeljeno na dva potpoglavlja. U prvom potpoglavlju je dat opis i formulacija optimizacionih modela koji su korišćeni u ovom radu. Sa druge strane, realizacija GUI aplikacije u programskom paketu MATLAB je prikazana u drugom potpoglavlju.

6.1. Optimizacioni modeli

U ovom potpoglavlju su prikazani optimizacioni modeli koji su primjenjivani kako na populacione metode iz poglavlja četri, tako i na solver CONOPT ugrađen u programskom paketu GAMS (poglavlje pet), a koji su testirani na IEEE testne sisteme (poglavlje tri). Optimizacionim modelima koje opisuje ovaj rad će se omogućiti optimizacija IEEE testnih sistema prema dva kriterijuma: minimalni troškovi proizvodnje iz konvencijalnih elektrana i minimalni aktivni gubici u mreži. Suštinska razlika između ova dva modela jeste kriterijumska funkcija, dok su im ograničenja tipa jednakosti i tipa nejednakosti ista.

U zavisnosti od kriterijuma prema kojem se vrši optimizacija željenog IEEE testnog sistema, kriterijumske funkcije imaju sljedeći matematički zapisi:

 Kriterijum minimalnih troškova proizvodnje iz konvencijalnih elektrana (MTP) [50]

$$F_{MTP} = \sum_{i \in N_g} (a_i + b_i P_{gi} + c_i P_{gi}^2)$$
(6.1)

gdje su: a_i , b_i i c_i koeficijenti troškova generatora i, P_{gi} aktivna snaga koju proizvodi generator i, N_g broj generatora u sistemu.

- Kriterijum minimalnih gubitaka u mreži (MGM) [51]

$$F_{MGM} = \sum_{\substack{i,j \in N_b \\ i \neq j}} G_{ij} (U_i^2 + U_j^2 - 2U_i U_j \cos(\theta_j - \theta_i))$$
(6.2)

pri čemu je: G_{ij} odvodnost voda između sabirnica *i* i *j*, U_i i U_j naponi na sabirnicama *i* i *j*, θ_i i θ_j fazni stavovi napona na sabirnicama *i* i *j*.

S obzirom da nijedan optimizacioni model nema smisla bez svojih ograničenja koja mogu bili tipa jednakosti ili tipa nejednakosti, to ih je potrebno definisati i za modele kojima se bavi ovaj magistarski rad. Optimizacioni modeli koji su korišćeni prilikom izrade ovog rada sadrže šest ograničenja tipa jednakosti i pet ograničenja tipa nejednakosti. Prema navedenom, optimizacioni model kojim se bavi ovaj magistarski rad se sastoji od šest ograničenja tipa jednakosti:

- Ograničenje toka aktivne snage od sabirnice *i* ka sabirnici *j* [50, 51]

$$P_{ij} = G_{ij}U_i^2 - U_iU_j[G_{ij}\cos(\theta_i - \theta_j - \delta_{ij}) + B_{ij}\sin(\theta_i - \theta_j - \delta_{ij})], \quad i, j \in N_b \Lambda i \neq j$$
(6.3)

gdje P_{ij} označava tok aktivne snage od sabirnice *i* ka sabirnici *j*, δ_{ij} predstavlja fazni stav između sabirnica *i* i *j*, a B_{ij} supscetansa voda između sabirnica *i* i *j*. Jednačina (6.3) predstavlja ograničenje toka aktivne snage kroz svaki vod.

- Ograničenje toka reaktivne snage od sabirnice *i* ka sabirnici *j* [50, 51]

$$Q_{ij} = -U_i^2 \left(B_{ij} + \frac{Bc_{ij}}{2} \right) - U_i U_j [G_{ij} \sin(\theta_i - \theta_j - \delta_{ij}) - B_{ij} \cos(\theta_i - \theta_j - \delta_{ij})], \quad i, j \in N_b \Lambda i \neq j$$
(6.4)

gdje je Q_{ij} tok reaktivne snage od sabirnice *i* ka sabirnici *j*, a Bc_{ij} supscetansa otočne grane između sabirnica *i* i *j* zamjenske Π šeme voda. U izrazu (6.4) je uzeta polovina ukupne vrijednosti supscetanse Bc_{ij} zbog proračuna tokova reaktivne snage koji se odnose na jednu sabirnicu, u ovom slučaju na sabirnicu *i*. Jednačina (6.4) predstavlja ograničenje toka reaktivne snage kroz svaki vod.

- Ograničenje aktivne snage u sabirnici *i* (balansna jednačina aktivne snage za sabirnicu *i*) [50, 51]

$$P_{gi} - P_{di} = \sum_{j \in N_b} P_{ij}, \ i \in N_g \ \Lambda \ i \neq j$$
(6.5)

pri čemu je P_{di} aktivna snaga koju zahtjeva potrošač (konzum) u sabirnici *i*. Međutim, bitno je naglasiti da u jednačini (6.5) tok aktivne snage od sabirnice *i* ka sabirnici *j* (P_{ij}) može biti pozitivnog, odnosno negativnog, predznaka u zavisnosti od toga da li navedena snaga ulazi, odnosno izlazi iz sabirnice. Naime, jednačina (6.5) se može razumjeti i na sljedeći način: vrijednost sume aktivnih snaga koje ulaze u jednu sabirnicu jednak je vrijednosti sume aktivnih snaga koje izlaze iz nje.

- Ograničenje reaktivne snage u sabirnici i (balansna jednačina reaktivne snage za sabirnicu i) [50, 51]

$$Q_{gi} - Q_{di} = \sum_{j \in N_b} Q_{ij}, \ i \in N_g \Lambda i \neq j$$
(6.6)

gdje Q_{gi} predstavlja reaktivnu snagu koju proizvodi generator *i*, a Q_{di} reaktivnu snagu koju zahtijeva potrošač (konzum) u sabirnici *i*. Slično kao kod jednačine (6.5), tok reaktivne snage od sabirnice *i* ka sabirnici *j* može biti ili pozitivna ili negativna vrijednost. Drugim riječima, vrijednost sume reaktivnih snaga koje ulaze u jednu sabirnicu jednak je vrijednosti sume reaktivnih snaga koje izlaze iz nje.

- Ograničenje faznog stava balansnog čvora [50, 51]

$$\theta_i = 0, \ i = balansni_čvor$$
 (6.7)

U teoriji optimalnih tokova snaga svaki elektroenergetski sistem mora imati jedan referentni čvor koji se naziva balansnim. Poznato je da fazni stav svakog balansnog čvora mora biti jednak nuli, ali i vrijednost napona u balansnom čvoru mora biti jednaka vrijednosti naponskog nivoa u kojem se nalazi posmatrani čvor.

Sljedeće ograničenje je posljednje ograničenje tipa jednakosti koje koristi ovaj model, a koje se odnosi na vrijednost napona u balansnom čvoru.

- Ograničenje vrijednosti napona balansnog čvora [50, 51]

$$U_i = 1 (p.u.), \quad i = balansni_čvor$$
(6.8)

U skladu sa prethodno navedenim, vrijednost napona u balansnom čvoru mora biti iste vrijednosti kao i naponski nivo u kojem se isti i nalazi. Radi jednostavnije formulacije optimizacionog modela, to su korišćene varijable predstavljene pomoću sistema jednačinih vrijednosti. Upravo zbog korišćenja sistema jediničnih vrijednosti, u jednačini (6.8) vrijednost napona balansnog čvora je jednak jedinici.

Sa druge strane, razmatrani optimizacioni modeli imaju pet ograničenja tipa nejednakosti:

- Ograničenje aktivne snage koju proizvodi generator u sabirnici *i* [50, 51]

$$P_{gi}^{min} \le P_{gi} \le P_{gi}^{max}, \ i \in N_g \tag{6.9}$$

pri čemu P_{gi}^{min} , odnosno P_{gi}^{max} , označava minimalnu, odnsno maksimalnu, aktivnu snagu koju može proizvesti generator u sabirnici *i*. Jednačina (6.9) ograničava količinu aktivne snage koju generatori injektiraju u najbližoj sabirnici.

- Ograničenje reaktivne snage koju proizvodi generator u sabirnici *j* [50, 51]

$$Q_i^{min} \le Q_i \le Q_i^{max}, \ i \in N_g \tag{6.10}$$

gdje su Q_i^{min} i Q_i^{max} minimalna i maksimalna reaktivna snaga koju može proizvesti generator u sabirnici *i*, respektivno. Slično kao za ograničenje proizvodnje aktivne snage (6.9), i za proizvodnju reaktivne snage jednačina (6.10) predstavlja injektiranje ukupne količine reaktivne snage u najbliži čvor.

- Ograničenje toka aktivne snage na vodu između sabirnice *i* i sabirnice *j* [50, 51]

$$-P_{ij}^{max} \le P_{ij} \le P_{ij}^{max}, \ i, j \in N_b \ \Lambda \ i \neq j$$
(6.11)

pri čemu P_{ij}^{max} predstavlja kapacitet voda izmađu sabirnica *i* i *j*. S obzirom da je u ovom modelu uzeta pretpostavka da svaki vod ima jednake kapacitete u oba smjera, to je ograničenje toka aktivne snage kroz vod između sabirnica *i* i *j* dat izrazom (6.11).

- Ograničenje vrijednosti napona u sabirnici i [50, 51]

$$U_i^{min} \le U_i \le U_i^{max}, \ i \in N_b \ \Lambda \ i \ne balansni_čvor$$
(6.12)

Ograničenje (6.12) ne dozvoljava da vrijednost napona (U_i) opadne ispod minimalne vrijednosti predviđene za posmatranu sabirnicu (U_i^{min}), ali ni da poraste iznad maksimalne dozvoljene vrijednosti (U_i^{max}).

- Ograničenje faznog stava napona u sabirnici i [50, 51]

$$\theta_i^{min} \le \theta_i \le \theta_i^{max}, \ i \in N_b \ \Lambda \ i \ne balansni_čvor$$
 (6.13)

Kao i za prethodna ograničenja tipa nejednakosti, slično važi i za ograničenje faznog stava napona u sabirnici *i* (6.13). Dakle, definisane su minimalna (θ_i^{min}) i maksimalna (θ_i^{max}) vrijednost faznog stava za svaku sabirnicu, i stvarna vrijednost faznog stava (θ_i) ne smije izlaziti iz tog opsega.

6.2. GUI aplikacija

U cilju jasnijeg prikaza populacionih metoda realizovana je GUI aplikacija u programskom paketu MATLAB. GUI aplikacija u sebi sadrži četri populacione metode (ABC, GSA, WDO i PSO), čiji su algoritmi opisani u poglavlju četri. Na slici 6.1 je prikazana GUI aplikacija pri njenom startovanju.

🛃 Optimalni_lokovi_Snaga		- 🗆 X
TESTNI SISTEM	PODEŠA VA NJA	
∨ Jednopolna šema	Kriterijum:	POKRENI
Podaci sistema		RESETUJ

Slika 6.1 Izgled GUI aplikacije pri njenom startovanju

Na slici 6.1 se može uočiti jednostavnost aplikacije, ali ujedno i njena velika mogućnost podešavanja. Naime, GUI aplikacija se sastoji od tri glavna polja kojima mogu pristupiti korisnici. Prvo polje se naziva "*TESTNI SISTEM*", u kojem korisnik može odabrati željeni testni sistem. Naziv drugog polja je "*PODEŠAVANJE*", koje omogućava odabir kriterijumske funkcije i željenog populacionog metoda. Posljednje, ali ne i najmanje važno polje se sastoji od dva tastera. Prvi taster ("*POKRENI*") služi za pokretanje optimizacije kada su ispunjena prva dva polja. Funkcija drugog tastera je resetovanje cijele GUI aplikacije, i nosi naziv "*RESETUJ*".

Opadajući meni u polju "*TESTNI SISTEMI*" omogućava odabir jedne od tri IEEE testne šeme (*IEEE_9*, *IEEE_14* i *IEEE_30*), kao što je prikazano na slici 6.2.

承 Optimalni_Tokovi_Snaga		- 🗆 X
TESTNI SISTEM	PODEŠA VA NJA	
	Kriterijum:	POKRENI
IBBE_14 IBBE_30		RESETUJ
IBBE_30		

Slika 6.2 Odabir jedne od tri IEEE testne šeme

Nakon odabira željene IEEE testne šeme, GUI aplikacija omogućava prikaz jednopolne šeme ili podataka sistema pritiskom na jedan od dva tastera iz prvog polja. Na slici 6.3a, odnosno 6.3b, je dat prikaz kako jednopolne šeme IEEE testnog sistema sa 9 čvorova, tako i podataka istog.

Slika 6.3 Prikaz (a) jednopolne šeme; (b) podataka; IEEE testnog sistema sa 9 čvorova

Drugo polje se sastoji od dva opadajuća menija. U prvom opadajućem meniju moguće je odabrati jednu od dvije kriterijumske funkcije. Prva kriterijumska funkcija je minimizacija troškova proizvodnje generatorskih jedinica, a druga minimizacija aktivnih gubitaka u mreži (slika 6.4).

Slika 6.4 Odabir kriterijumske funkcije

Drugi opadajući meni u drugom polju sadrži četri optimizacione populacione metode (ABC, GSA, WDO i PSO) kao što je i prikazano na slici 6.5.

Slika 6.5 Odabir optimizacione metode

Nakon odabira željene populacione metode otvara se novo polje u koje je potrebno unijeti ulazne parametre iste. U slučaju da postoji nesigurnost u vezi odabira parametara, to na vrhu spomenutog polja postoji taster koji će parametre popuniti uobičajenim vrijednostima (slika 6.6).

Slika 6.6 Unos ulaznih parametara odabrane populacione metode

Kada su popunjeni svi opadajući meniji iz prva dva polja, moguće je pritisnuti taster "*POKRENI*" u trećem polju koji će započeti optimizaciju. Nakon završetka proračuna pojaviće se novo polje koje prikazuje rezultate optimizacije. U novom polju je moguće prikazati kako proračunate rezultate koji se odnose na sabirnice (slika 6.7a), tako i na proračunate rezultate koji se odnose na vodove(6.7b).

škovi:	6113.0	9 [\$/h]	Vodovi	Gubi	ci: 2.313	37 [MW]	Troškovi:	6113.0	9 [\$/h]	Vodov	e Gubio	ci: 2.313
vor	V (p.u.)	Teta (step.)	Pgen (MW)	Qgen (MVAr)	Ppot (MW)	Qpot(M)	Od čvora	Ka čvoru	Pii (MW)	Qii (MVAr)	Paub (MW) Qa	aub (MVAr)
1	1.1000	0	159.7493	14.7594	0		1	4	159.7493	14.7594	0	12.1291
2	1.0901	-2.6639	93.5883	-2.8177	0		2	8	93.5883	-2.8177	0	4.7445
3	0.9767	-3.7127	63.9758	-23.7592	0		3	6	63.9758	-23.7592	0	30.1855
4	1.0994	-4.3479	0	0	0		4	1	-159.7493	-2.5952	0	12.1291
5	1.0886	-7.3329	0	0	90		4	5	68.1313	-7.4607	0.6535	3.5364
6	1.0986	-5.5147	0	0	0		4	9	91.6180	10.0559	0.7299	6.2038
7	1.0888	-7.4713	0	0	100		5	4	-67.4778	-7.9142	0.6535	3.5364
8	1.0998	-5.4775	0	0	0		5	6	-22.5222	-22.0858	0.1672	0.7287
9	1.0773	-8.0175	0	0	125		6	3	-63.9758	26.0766	0	30.1855
							6	5	22.6894	-20.0025	0.1672	0.7287
							6	7	41.2865	-6.0741	0.1723	1.4593
							7	6	-41.1142	-17.4666	0.1723	1.4593
						>	7	8	-58.8859	-17.5334	0.2541	2.1521
									· · · ·			

(b)

Slika 6.7 Prikaz proračunatih rezultata koji se odnose na: (a) sabirnice; (b) vodove;

7. REZULTATI OPTIMIZACIJE

Ovo poglavlje predstavlja suštinu i težinu samog magistarskog rada. Naime, ono objedinjuje sva prethodna poglavlja. S obzirom da je tema ovog magistarskog rada optimizacija elektroenergetskih sistema, to će se ovdje prikazati rezultati koji su dobijeni rješavajući ovu problematiku. Drugim riječima, u ovom poglavlju je prikazana optimizacija testnih IEEE sistema opisanih u poglavlju 3 koristeći kriterijume minimalnih troškova proizvodnje i minimalnih gubitaka u mreži (poglavlje 6) primjenom populacionih metoda iz poglavlja 4, ali i primjenom integrisanog solvera CONOPT unutar programskog paketa GAMS (poglavlje 5). Bitno je naglasiti da je jedan od djelova ovog rada pronalazak optimalnog mjesta priključka obnovljivih izvora energije detaljno opisanih u poglavlju 2, koji su implementirani na IEEE testnu šemu sa trideset čvorova.

U skladu sa navedenim, ovo poglavlje je izdijeljeno na četri potpoglavlja. Prvo potpoglavlje se osvrće na poređenje rješenja optimizacije dobijenih GAMS-ovim integrisanim solverom CONOPT i populacionim metodama (ABC, GSA, WDO i PSO). Druga i treća cjelina se odnose na poređenje rješenja optimizacije po kriterijumu minimalnih troškova proizvodnje i po kriterijumu minimalnih gubitaka u mreži dobijenih solverom CONOPT i predloženim rješenjima iz međunarodnim časopisima. Odabir optimalne lokacije priključenja obnovljivih izvora energije na IEEE testnoj šemi sa trideset čvorova je prikazan u posljednjem, četvrtom potpoglavlju.

S obzirom da je jedan od bitnih parametara ocjene kvaliteta optimizacije vrijeme konvergencije, to je bitno navesti karakteristike personalnog računara na kojem je ista i vršena. U skladu sa navedenim, proračuni dobijeni u ovom radu vršeni su na personalnom računaru sa sljedećim karakteristikama: *2.5GHz Intel Core i7* i *8GB RAM*.

7.1. Poređenje rješenja optimizacije dobijenih solverom CONOPT i populacionim metodama

U cilju određivanja kvalitetnog rješenja optimizacije potrebno je napraviti presjek metoda koje su koristili istraživači na ovom polju do sada. Najčešći pristup rješavanju problema optimizacije elektroenergetskih sistema je primjenom populacionih metoda. U poglavlju 4 ovog rada detaljno su prikazani algoritmi najčešće korišćenih populacionih optimizacionih metoda (ABC, GSA, WDO i PSO), kao i pseudo kod koji je korišćen. Primjenom GUI aplikacije opisane u poglavlju 6 vršila se optimizacija IEEE testnih sistema sa devet, četrnaest i trideset čvorova. GUI aplikacija je startovana 10 puta uzastopno, zasebno za svaku šemu i za kriterijume minimalnih troškova proizvodnje i minimalnih gubitaka u mreži. S obzirom da populacione metode vrše proračun onoliko puta koliki je broj iteracija, to je važno navesti u kojoj iteraciji je postignuto optimalno rješenje. Uvažavajući navedeno, u ovom potpoglavlju će biti prikazane tabele koje sadrže vrijeme konvergencije, broj iteracije u kojoj je optimalno rješenje postignuto, vrijednost kriterijumske funkcije i tabele sa naponima na svim sabirnicama, proizvodnji električne energije svakog generatora i optimalni tokovi snaga u sabirnicama. Zbog opširnosti podataka koji će se prikazati, ali i veće preglednosti, ovo potpoglavlje je podijeljeno u 6 cjelina. Prve četri cjeline se odnose na rezultate dobijene korišćenjem četri populalcione metode (ABC, GSA, WDO i PSO), dok se peta cjelina odnosi na rješenja koja su proračunata uz pomoć integrisanog solvera CONOPT. U posljednjoj cjelini su poređeni rezultati populacionih metoda sa integrisanim solverom.

7.1.1. Rezultati dobijeni primjenom ABC metoda

U ovom dijelu rada biće prikazani rezultati proračunati korišćenjem ABC metode. Naime, prikazane su tabele sa rezultatima dobijenim uzastopnim pokretanjem GUI aplikacije, ali i vrijednosti parametara sistema proračunatih za najoptimalnije proračunato rješenje.

Uvažavajući navedeno, u tabelama 7.1 i 7.2 su prikazani rezultati proračunati ABC metodom iz poglavlja 4 uvažavajući kriterijum minimalnih troškova proizvodnje i kriterijum minimalnih gubitaka u mreži, respektivno.

Tabela 7.1 Rezultati dobijeni primjenom ABC metode uvažavajući kriterijum minimalnih troškova proizvodnje

Red br.	IEEE šem	a sa 9 čvo	orova	ة IEEE ذ	šema sa 1 _. vorova	IEEE šema sa 30 čvorova			
	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.
1	5282.944	4.4256	94	8093.674	12.8957	98	802.249	39.6645	98
2	5283.212	4.5214	96	8095.489	12.0012	86	802.675	37.6842	100
3	5281.998	4.5825	93	8089.101	12.2246	89	802.721	38.4588	99
4	5281.744	4.3582	100	8095.383	12.4286	87	802.982	39.1738	99
5	5283.041	4.4264	94	8094.978	13.5552	95	802.698	37.9258	100
6	5283.439	4.6285	98	8095.579	12.6425	100	802.342	38.4523	98
7	5282.748	4.2123	97	8090.012	14.3125	89	802.423	39.2546	99
8	5283.001	4.2549	93	8096.824	12.4652	94	802.140	38.6895	98
9	5282.224	4.3469	89	8095.682	13.8240	100	802.998	38.9256	100
10	5282.897	4.9863	99	8094.528	13.6497	98	802.917	38.2415	100

Red. br.	IEEE šema	a sa 9 čvo	orova	IEEE š Č	šema sa 14 /orova	4	IEEE šema sa 30 čvorova		
	F _{obj} [MW]	Vrijeme [s]	Br. iter.	$F_{obj}[MW]$	Vrijeme [s]	Br. iter.	$F_{obj}[MW]$	Vrijeme [s]	Br. iter.
1	2.3175	4.9862	92	0.8010	12.2463	99	3.3158	38.1542	72
2	2.3182	4.7525	83	0.7955	13.2542	97	3.2985	37.0013	85
3	2.3192	3.8642	93	0.8098	13.2466	91	3.3082	39.3451	91
4	2.3178	4.2348	92	0.8032	13.8526	87	3.2438	37.4643	74
5	2.3183	3.9852	79	0.8183	12.8996	100	3.2879	39.9458	90
6	2.3133	5.3136	85	0.8005	13.8563	91	3.3015	37.0125	81
7	2.3178	3.9745	93	0.8024	13.7596	84	3.2998	38.9775	97
8	2.3181	4.6425	88	0.7988	12.4842	79	3.3126	37.5586	77
9	2.3184	5.1254	86	0.8154	13.2779	94	3.2634	38.1212	82
10	2.3188	4.8754	94	0.8023	13.4585	81	3.3112	36.9846	92

Tabela 7.2 Rezultati dobijeni primjenom ABC metode uvažavajući kriterijum minimalnih aktivnih gubitaka u mreži

Posmatrajući prikazane tabele (tabela 7.1 i tabela 7.2) može se primijetiti da vrijeme potrebno za rješavanje problema kojim se bavi ovaj rad drastično raste sa složenošću sistema. Drugim riječima, što je veći broj sabirnica sistema, to je i veće vrijeme potrebno za proračun optimalnog rješenja. Sa druge strane, ABC metod se svrstava u grupu populacionih metoda, pa se nikad ne može desiti da se bobije isto rješenje. Jedan od podataka koji je prikazan u tabelama 7.1 i 7.2 je broj iteracija. Ovaj metod je podešen tako da mu maksimalni broj iteracija iznosi 100.

S obzirom da su korišćena tri IEEE testna sistema, i da je vršena optimizacija prema dva kriterijuma, nameće se postojanje šest najboljih rješenja koristeći ABC metod. Uvažavajući navedeno, u sljedećim tabelama (tabela 7.3 i tabela 7.4) su prikazani rezultati za najbolje rješenje proračunato za IEEE testni sistem sa devet čvorova uvažavajući kriterijum minimalnih troškova proizvodnje.

Tabela 7.3 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g (MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	96.57830	-4.2762	0.0	0.0
2	1.0988	0.0641	142.2347	79.3370	0.0	0.0
3	0.9929	0.0257	76.70990	-27.047	0.0	0.0
4	0.9092	-0.0677	0.000000	0.0000	0.0	0.0
5	0.9043	-0.1240	0.000000	0.0000	125	50
6	0.8993	-0.1155	0.000000	0.0000	90	30
7	0.9932	-0.0119	0.000000	0.0000	0.0	0.0
8	0.9563	-0.0616	0.000000	0.0000	100	35
9	0.9387	-0.0261	0.000000	0.0000	0.0	0.0

Tabela 7.4 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	4	96.5783	-4.27620
2	4	5	54.4701	-6.94530
3	4	6	43.0079	-3.75470
4	5	7	-68.9260	-68.9260
5	6	9	-46.2294	-46.2294
6	2	7	141.2811	79.3370
7	7	8	70.7907	36.8728
8	8	9	-29.1515	11.1161
9	3	9	76.4007	-27.0470

U tabeli 7.3 su prikazani rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa devet čvorova dobijeni primjenom ABC metode uvažavajući kriterijum minimalnih troškova proizvodnje. Sa druge strane u tabeli 7.4 su prikazani rezultati za isti metod i isti kriterijum, a koji se odnose na vodove.

U nastavku su prikazane tabele 7.5 i 7.6 sa podacima najoptimalnijeg rješenja bobijeni ABC metodom za IEEE testnu šemu sa devet čvorova uvažavajući kriterijum minimalnih gubitaka u mreži.

Tabela 7.5 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	Q _g (MVAr)	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.0000	0.0000	162.087	14.9769	0.0	0.0
2	0.9970	-0.0549	80.6780	-2.1846	0.0	0.0
3	0.9766	-0.0567	74.5546	-23.8098	0.0	0.0
4	1.0994	-0.0770	0.00000	0.00000	0.0	0.0
5	1.0774	-0.1440	0.00000	0.00000	125	50
6	1.0886	-0.1277	0.00000	0.00000	90	30
7	1.0997	-0.1055	0.00000	0.00000	0.0	0.0
8	1.0887	-0.1349	0.00000	0.00000	100	35
9	1.0987	-0.0933	0.00000	0.00000	0.0	0.0

Tabela 7.6 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	4	162.0807	14.9769
2	2 4		95.7440	9.7215
3	4	6	66.3367	-7.2670
4	5	7	-30.0487	-26.1667
5	6	9	-24.2830	-21.7102
6	2	7	80.6780	-2.1846
7	7	8	50.3609	2.4630
8	8	9	-49.8267	-16.2857
9	3	9	74.5546	-23.8098

Posmatrajući tabele 7.3 i 7.5 može se primijetiti da generatori ne trpe ista opterećenja kada se posmatraju različiti kriterijumi. Naime, uvažavajući kriterijum minimalnih troškova proizvodnje najveći dio električne energije proizvodi generator u sabirnici dva. Samim tim, najveći tokovi snaga će biti upravo kroz vodove čija je jedna sabirnica čvor dva (tabela 7.4). Sa druge strane, primjenom kriterijuma minimalnih troškova proizvodnje, najveći dio električne energije će proizvoditi generator u prvoj sabirnici, pa će i tokovi aktivnih snaga biti najveći kroz vodove koji se ističu u sabirnici jedan (tabela 7.6).

Slično kao i za tabele 7.3-7.6, u nastavku slijede tabele koje se odnose na najbolja rješenja dobijena korišćenjem ABC metoda primjenjena na IEEE testnu šemu sa četrnaest čvorova uvažavajući i kriterijum minimalnih troškova proizvodnje i kriterijum minimalnih gubitaka u mreži.

Tabela 7.7 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g (MVAr)$	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.0000	0.0000	195.6464	1.33300	0.00	0.00
2	1.0311	-0.0705	37.05380	8.87030	21.7	12.7
3	1.0093	-0.1716	34.55470	22.5531	94.2	19.0
4	1.0102	-0.1573	0.000000	0.00000	47.8	-3.90
5	1.0158	-0.1351	0.000000	0.00000	7.60	1.60
6	0.9835	-0.2423	1.266300	24.1146	11.2	7.50
7	0.9779	-0.2220	0.000000	0.00000	0.00	0.00
8	1.0087	-0.2220	0.000000	17.6526	0.00	0.00
9	0.9801	-0.2546	0.000000	0.00000	29.5	16.6
10	0.9727	-0.2584	0.000000	0.00000	9.00	5.80
11	0.9744	-0.2531	0.000000	0.00000	3.50	1.80
12	0.9682	-0.2596	0.000000	0.00000	6.10	1.60
13	0.9639	-0.2613	0.000000	0.00000	13.5	5.80
14	0.9535	-0.2781	0.000000	0.00000	14.9	5.00

Tabela 7.8 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	129.6076	-1.8835	11	6	11	6.03200	1.66450
2	1	5	66.0388	3.2165	12	6	12	7.57300	2.31330
3	2	3	53.3622	-0.9611	13	6	13	17.0599	6.30010
4	2	4	50.4759	-3.9891	14	7	8	0.00000	-17.1131
5	2	5	38.1871	-3.9936	15	7	9	28.4220	-1.50610
6	3	4	-7.5424	1.8459	16	9	10	6.53830	6.09900
7	4	5	-52.7357	3.39391	17	9	14	10.3942	4.8579
8	4	7	28.4220	-16.0945	18	10	11	-2.48810	0.2287
9	4	9	18.0105	14.4205	19	12	13	1.39370	0.5475
10	5	6	40.5985	-1.9377	20	13	14	4.72170	0.5974

Tabela 7.9 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	Q _g (MVAr)	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	11.7370	0.94250	0.00	0.00
2	1.0244	-0.0021	41.9395	-1.67440	21.7	12.7
3	1.0192	-0.0204	83.1727	15.5922	94.2	19.0
4	1.0203	-0.0183	0.00000	0.00000	47.8	-3.90
5	1.0220	-0.0129	0.00000	0.00000	7.60	1.60
6	1.0006	0.0075	52.8517	13.0635	11.2	7.50
7	1.0098	0.0340	0.00000	0.00000	0.00	0.00
8	1.0320	0.1528	70.0946	17.2112	0.00	0.00
9	0.9978	-0.0145	0.00000	0.00000	29.5	16.6
10	0.9903	-0.0163	0.00000	0.00000	9.00	5.80
11	0.9917	-0.0072	0.00000	0.00000	3.50	1.80
12	0.9857	-0.0099	0.00000	0.00000	6.10	1.60
13	0.9813	-0.0123	0.00000	0.00000	13.5	5.80
14	0.9714	-0.0334	0.00000	0.00000	14.9	5.00

Tabela 7.10 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	5.3080	2.1659	11	6	11	7.7579	0.8423
2	1	5	6.4290	-1.2234	12	6	12	7.7708	2.1685
3	2	3	9.7661	-1.8176	13	6	13	17.9280	5.8832
4	2	4	9.4284	-2.4325	14	7	8	-70.0946	-8.5957
5	2	5	6.3433	-2.4259	15	7	9	44.3650	12.1039
6	3	4	-1.3040	-0.8325	16	9	10	4.8386	6.9766
7	4	5	-13.3005	0.2136	17	9	14	9.3303	5.4202
8	4	7	-25.7296	4.8911	18	10	11	-4.1844	1.1154
9	4	9	-0.6961	0.2624	19	12	13	1.5913	0.4022
10	5	6	-8.1950	3.5274	20	13	14	5.7776	0.0166

Iz tabela 7.7 i 7.9 se jasno može vidjeti da opterećenje na generatorima varira u zavisnosti od korišćenog kriterijuma. Naime, posmatrajući tabelu 7.7 može se primjetiti da primjenom kriterijuma minimalnih troškova proizvodnje generator u prvoj sabirnici proizvodi najveću količinu električne energije, dok generatori u sabirnicama šest i osam gotovo da ne proizvode istu. Sa druge strane, ako se razmatra kriterijum minimalnih gubitaka u mreži, svi generatori proizvode relativno istu količinu električne energije.

Posljednji sistem (IEEE testni sistem sa trideset čvorova) na kojem je testiran ABC populacioni metod predstavlja najsloženiji testirani sistem. U tabelama 7.11-7.14 su prikazani rezultati najboljeg rješenja koje je proračunao ABC metod.

Br. čvora	U (p.u.)	θ (rad)	Р _g (MW)	Q _g (MVAr)	Br. čvora	U (p.u.)	θ (rad)	P_g (MW)	Q _g (MVAr)
1	1.0000	0.0000	170.1220	11.4448	16	1.0715	- 0.1911	0.00	0.00
2	1.0416	- 0.0566	53.04650	7.16690	17	1.0707	- 0.1964	0.00	0.00
3	1.0347	- 0.0940	0.00000	0.00000	18	1.0638	- 0.2111	0.00	0.00
4	1.0271	- 0.1128	0.00000	0.00000	19	1.0637	- 0.2141	0.00	0.00
5	1.0047	- 0.1720	22.1543	19.6314	20	1.0689	- 0.2110	0.00	0.00
6	1.0179	- 0.1312	0.00000	0.00000	21	1.0690	- 0.2027	0.00	0.00
7	1.0047	- 0.1572	0.00000	0.00000	22	1.0695	- 0.2025	0.00	0.00
8	1.0165	- 0.1357	21.0903	27.1140	23	1.0676	- 0.2102	0.00	0.00
9	1.0795	- 0.1636	0.00000	0.00000	24	1.0617	- 0.2118	0.00	0.00
10	1.0776	- 0.1937	0.00000	0.00000	25	1.0620	- 0.2079	0.00	0.00
11	1.1000	- 0.1392	13.9207	11.0126	26	1.0451	- 0.2146	0.00	0.00
12	1.0791	- 0.1810	0.00000	0.00000	27	1.0705	- 0.2013	0.00	0.00
13	1.1000	- 0.1669	12.0000	16.4760	28	1.0151	- 0.1401	0.00	0.00
14	1.0694	- 0.1967	0.00000	0.00000	29	1.0605	- 0.2252	0.00	0.00
15	1.0691	-	0.00000	0.00000	30	1.0458	-	0.00	0.00

Tabela 7.11 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Tabela 7.12 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	112.6696	7.2408	22	12	13	-12.0000	-15.9953
2	1	3	57.4523	4.2041	23	12	14	7.3688	0.6228
3	2	4	34.1031	-3.4781	24	12	15	17.2918	-0.3387
4	2	5	62.6712	5.7466	25	12	16	6.3882	1.1369
5	2	6	45.0784	-1.1768	26	14	15	1.1116	-1.0974
6	3	4	53.7220	2.0542	27	15	18	5.3768	-0.0085
7	4	6	49.0075	8.6590	28	15	23	4.6513	-1.4322
8	4	12	30.2488	-9.7423	29	16	17	2.8540	-0.7349
9	5	7	-11.1111	3.4594	30	18	19	2.1497	-0.9638
10	6	7	34.2877	4.7636	31	19	20	-7.3534	-4.3701
11	6	8	11.2154	-0.2186	32	21	22	-1.4748	-1.3903
12	6	9	17.9110	-7.4812	33	22	24	6.2791	0.6423
13	6	10	13.6993	11.2765	34	23	24	1.4306	1.6151
14	6	28	15.6036	-0.2291	35	24	25	-1.0358	0.4840
15	8	28	2.2912	-2.2244	36	25	26	3.5408	2.3610
16	9	10	31.8317	2.2979	37	25	27	-4.5788	-1.8808
17	9	11	-13.9207	-10.4710	38	27	29	6.1922	-0.6328
18	10	17	6.1748	6.5558	39	27	30	7.0570	0.7457
19	10	20	9.6505	0.2818	40	28	27	17.8518	3.1546
20	10	21	16.1105	4.9932	41	29	30	3.7179	1.4838
21	10	22	7.7951	2.1177					

Tabela 7.13 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br.	U	θ	P _g	Q_g	Br.	U	θ	Pg	Q_g
čvora	(p . u .)	(rad)	(MW)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVAr)
1	1.0000	0.0000	51.6439	-14.2404	16	0.9618	-0.0853	0.00	0.00
2	1.1000	-0.0147	80.0000	15.3652	17	0.9671	-0.1006	0.00	0.00
3	1.0901	-0.0366	0.00000	0.00000	18	0.9515	-0.1109	0.00	0.00
4	1.0871	-0.0433	0.00000	0.00000	19	0.9534	-0.1179	0.00	0.00
5	1.0832	-0.0802	49.9999	23.7986	20	0.9602	-0.1157	0.00	0.00
6	1.0863	-0.0530	0.00000	0.00000	21	0.9642	-0.1102	0.00	0.00
7	1.0779	-0.0722	0.00000	0.00000	22	0.9648	-0.1100	0.00	0.00
8	1.0892	-0.0534	35.0000	36.1540	23	0.9577	-0.1112	0.00	0.00
9	0.9905	-0.0608	0.00000	0.00000	24	0.9578	-0.1214	0.00	0.00
10	0.9734	-0.0992	0.00000	0.00000	25	0.9686	-0.1278	0.00	0.00
11	1.0290	0.0005	30.0000	19.9697	26	0.9500	-0.1359	0.00	0.00
12	0.9644	-0.0635	0.00000	0.00000	27	0.9846	-0.1264	0.00	0.00
13	0.9500	-0.0023	40.0000	-8.5466	28	1.0830	-0.0592	0.00	0.00
14	0.9543	-0.0852	0.00000	0.00000	29	0.9722	-0.1540	0.00	0.00
15	0.9541	-0.0926	0.00000	0.00000	30	0.9568	-0.1686	0.00	0.00

Tabela 1.14 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog ABC metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	27.8161	-12.2565	22	12	13	-40.0000	11.1419
2	1	3	23.8278	-1.9838	23	12	14	7.8685	0.1236
3	2	4	20.2771	-0.4382	24	12	15	19.5852	-1.9895
4	2	5	39.6079	-1.3377	25	12	16	8.8622	-2.8532
5	2	6	26.0953	-1.8333	26	14	15	1.5862	-1.6467
6	3	4	21.2156	0.8395	27	15	18	6.6058	-2.0399
7	4	6	26.1314	-5.8388	28	15	23	6.0774	-4.6512
8	4	12	7.5159	9.2975	29	16	17	5.2742	-4.8383
9	5	7	-5.2048	5.8687	30	18	19	3.3496	-3.0546
10	6	7	28.2163	1.2920	31	19	20	-6.1649	-6.4840
11	6	8	-0.9118	-7.6626	32	21	22	-1.6749	-1.7629
12	6	9	3.6674	-1.3712	33	22	24	5.9466	0.0276
13	6	10	7.9883	2.6977	34	23	24	2.8130	-1.3812
14	6	28	12.8679	1.6628	35	24	25	0.0018	-3.1505
15	8	28	4.0829	-0.4622	36	25	26	3.5494	2.3739
16	9	10	33.6674	16.0144	37	25	27	-3.5680	-5.5600
17	9	11	-30.0000	-17.4183	38	27	29	6.2124	-0.2598
18	10	17	3.7878	5.7880	39	27	30	7.0838	0.9270
19	10	20	8.4715	2.4150	40	28	27	16.9150	7.6564
20	10	21	15.9262	4.6547	41	29	30	3.7248	1.3657
21	10	22	7.6702	1.8907					

Kao kod prethodnih sistema (IEEE testni sistem sa devet i četrnaest čvorova) za očekivati je da primjenom kriterijuma minimalnih troškova proizvodnje jedan od generatora će biti najviše opterećen, dok će za kriterijum minimalnih gubitaka u mreži svi generatori biti relativno jednako opterećeni. Zapravo, u tabeli 7.11 se može uočiti da generator u prvoj sabirnici proizvodi najveću količinu električne energije, dok sa druge strane tabela 7.13 prikazuje uravnoteženu proizvodnju električne energije na svim generatorima.

7.1.2. Rezultati dobijeni primjenom GSA metoda

Ova cjelina sedmog poglavlja prikazuje rezultate proračunate korišćenjem GSA metode. Odnosno, u ovom potpoglavlju su prikazane tabele sa rezultatima nastalim uzastopnim pokretanjem programa, ali i podaci sistema za najbolje vreme konvergencije.

Kao i kod prethodnog metoda (ABC metod) u prvim tabelama su prikazani rezultati dobijeni GSA metodom nastali uzastopnim pokretanjem progrma uvažavajući oba kriterijuma čijom se problematikom bavi ovaj rad.

Tabela 7.15 Rezultati dobijeni primjenom GSA metode uvažavajući kriterijum minimalnih troškova proizvodnje

Red.	IEEE šem	a sa 9 čvo	orova	ة IEEE دُن	šema sa 1 vorova	IEEE šema sa 30 čvorova			
br.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.
1	5292.737	2.3537	84	8182.674	6.1254	100	802.135	17.0015	89
2	5293.723	2.0985	93	8181.459	5.9685	93	802.186	16.9991	96
3	5294.034	2.3896	96	8177.960	6.2465	96	802.253	18.9825	93
4	5292.979	2.3994	88	8183.825	6.3450	81	801.998	16.9882	86
5	5293.231	2.1582	100	8182.345	6.1993	83	801.965	20.8452	100
6	5294.184	2.2645	99	8183.528	5.8945	100	802.204	19.6358	94
7	5293.342	2.1985	100	8179.988	5.9146	95	801.917	20.1129	96
8	5293.114	2.3462	89	8183.642	6.0042	93	802.305	18.7852	83
9	5293.934	2.1006	88	8184.248	6.6582	100	802.012	19.2466	92
10	5293.013	2.1311	99	8184.582	6.2884	82	801.934	20.0094	100

Tabela 7.16 Rezultati dobijeni primjenom GSA metode uvažavajući kriterijum minimalnih gubitaka u mreži

Red.	IEEE šema	IEEE šema sa 9 čvorova			ema sa 14 vorova	4	IEEE šema sa 30 čvorova			
br.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	
1	2.3389	2.4565	93	1.5275	6.2686	93	4.3953	18.8245	91	
2	2.3321	2.1548	96	1.5034	6.4365	86	4.3842	19.8287	93	
3	2.3293	2.2648	95	1.5163	6.4485	94	4.3918	18.8993	100	
4	2.3346	2.4645	100	1.4858	6.3586	87	4.3231	19.5865	88	
5	2.3372	2.3868	88	1.4926	6.3331	99	4.3974	18.8331	100	
6	2.3279	2.3136	100	1.4893	6.1857	85	4.3026	17.6486	100	
7	2.3264	2.2992	100	1.5231	6.4825	83	4.3127	19.9934	94	
8	2.3311	2.1331	96	1.5348	6.1087	95	4.4165	19.1694	96	
9	2.3284	2.2468	98	1.5298	6.4689	96	4.4397	17.8548	98	
10	2.3324	2.0198	93	1.5101	6.3442	94	4.3992	18.6498	95	

Najbolja rješenja proračunata primjenom GSA metode za IEEE testni sistem sa devet čvorova uvažavajući kriterijum minimalnih troškova proizvodnje i minimalnih gubitaka u mreži su prikazana u tabelama 7.17-7.18 i 7.19-7.20, respektivno.

Tabela 7.17 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_{g}(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	82.6790	-1.27470	0.0	0.0
2	1.1000	0.0958	142.610	31.4946	0.0	0.0
3	1.0573	0.0639	92.5816	9.77070	0.0	0.0
4	0.9250	-0.0558	0.00000	0.00000	0.0	0.0
5	0.9084	-0.1052	0.00000	0.00000	125	50
6	0.9243	-0.0921	0.00000	0.00000	90	30
7	0.9766	0.0217	0.00000	0.00000	0.0	0.0
8	0.9633	-0.0276	0.00000	0.00000	100	35
9	0.9785	0.0077	0.00000	0.00000	0.0	0.0

Tabela 7.18 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	82.6790	-1.27470
2	4	5	50.3844	5.74620
3	4	6	32.8417	-11.5813
4	5	7	-73.6341	-32.0071
5	6	9	-56.2197	-29.1866
6	2	7	141.264	31.4946
7	7	8	65.8562	4.6860
8	8	9	-34.1894	-19.5612
9	3	9	92.0844	9.7707

Tabela 1.19 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g (MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	157.2299	14.3670	0.0	0.0
2	1.0959	-0.0361	100.7780	-3.78190	0.0	0.0
3	1.0452	-0.0666	59.31850	-22.7009	0.0	0.0
4	1.1000	-0.0746	0.000000	0.00000	0.0	0.0
5	1.0777	-0.1366	0.000000	0.00000	125	50
6	1.0895	-0.1269	0.000000	0.00000	90	30
7	1.1000	-0.0884	0.000000	0.00000	0.0	0.0
8	1.0895	-0.1259	0.000000	0.00000	100	35
9	1.1000	-0.0957	0.000000	0.00000	0.0	0.0

Tabela 7.20 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	157.229	14.3670
2	4	5	88.8673	10.4633
3	4	6	68.3627	-7.8677
4	5	7	-36.8222	-24.5294
5	6	9	-22.2945	-22.4868
6	2	7	100.778	-3.7819
7	7	8	63.5696	0.7347
8	8	9	-36.7210	-18.8697
9	3	9	59.3185	-22.7009

Kao i kod ABC metode, opterećenja na generatorima su slično raspoređena u zavisnosti od korišćenog kriterijuma.

Sljedeći sistem na koji je analiziran GSA metod je IEEE testni sistem sa četrnaest čvorova. U tabelama 7.21-7.24 su prikazani rezultati najboljih rješenja dobijenih primjenom GSA metoda na IEEE testnu šemu sa četrnaest sabirnica, uvažavajući oba kriterijuma kojim se bavi ovaj magistarski rad.

Tabela 7.21 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_{g}(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	181.9698	3.65200	0.00	0.00
2	0.9859	-0.0750	35.39540	27.8484	21.7	12.7
3	0.9514	-0.2113	1.869000	28.2593	94.2	19.0
4	0.9573	-0.1509	0.000000	0.00000	47.8	-3.90
5	0.9638	-0.1249	0.000000	0.00000	7.60	1.60
6	0.9861	-0.1733	31.39330	13.5177	11.2	7.50
7	0.9760	-0.1728	0.000000	0.00000	0.00	0.00
8	0.9752	-0.1382	18.71830	-0.1490	0.00	0.00
9	0.9619	-0.2068	0.000000	0.00000	29.5	16.6
10	0.9577	-0.2068	0.000000	0.00000	9.00	5.80
11	0.9677	-0.1928	0.000000	0.00000	3.50	1.80
12	0.9694	-0.1924	0.000000	0.00000	6.10	1.60
13	0.9631	-0.1952	0.000000	0.00000	13.5	5.80
14	0.9425	-0.2228	0.000000	0.00000	14.9	5.00

Tabela 7.22 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	125.5084	-3.1010	11	6	11	11.1832	3.90700
2	1	5	56.46140	6.75300	12	6	12	8.31420	2.50860
3	2	3	65.79360	3.83210	13	6	13	19.7760	7.53200
4	2	4	41.83290	2.07690	14	7	8	-18.7183	0.79810
5	2	5	28.56700	2.19040	15	7	9	29.0193	13.0797
6	3	4	-28.6474	8.31320	16	9	10	1.51330	4.12120
7	4	5	-55.6640	3.74130	17	9	14	7.03380	3.60840
8	4	7	10.3009	14.5335	18	10	11	-7.4933	-1.6964
9	4	9	9.02790	-4.5084	19	12	13	2.11940	0.71020
10	5	6	19.0800	9.03640	20	13	14	8.07840	1.83170

Tabela 7.23 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_{g}(MW)$	Q _g (MVAr)	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	22.6116	2.58000	0.00	0.00
2	0.9992	-0.0049	63.5175	4.84300	21.7	12.7
3	0.9779	-0.0457	65.5865	6.52170	94.2	19.0
4	0.9913	-0.0363	0.00000	0.00000	47.8	-3.90
5	0.9917	-0.0271	0.00000	0.00000	7.60	1.60
6	1.0075	-0.0220	49.7877	15.7855	11.2	7.50
7	0.9747	0.0062	0.00000	0.00000	0.00	0.00
8	0.9993	0.1131	58.9825	17.1379	0.00	0.00
9	0.9750	-0.0402	0.00000	0.00000	29.5	16.6
10	0.9726	-0.0426	0.00000	0.00000	9.00	5.80
11	0.9859	-0.0347	0.00000	0.00000	3.50	1.80
12	0.9904	-0.0394	0.00000	0.00000	6.10	1.60
13	0.9839	-0.0410	0.00000	0.00000	13.5	5.80
14	0.9594	-0.0607	0.00000	0.00000	14.9	5.00

Tabela 7.24 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	9.8862	2.3925	11	6	11	9.4249	6.4466
2	1	5	12.7255	0.1875	12	6	12	8.1554	2.8602
3	2	3	21.6052	3.8274	13	6	13	18.9111	8.7926
4	2	4	17.3246	-2.6345	14	7	8	-58.9825	-10.4834
5	2	5	12.7502	-1.4325	15	7	9	40.0829	0.6745
6	3	4	-7.2450	-5.3672	16	9	10	3.2461	1.5249
7	4	5	-19.7317	5.4181	17	9	14	8.0198	1.9216
8	4	7	-18.8996	-8.8109	18	10	11	-5.7582	-4.2865
9	4	9	0.6830	3.2338	19	12	13	1.9655	1.0720
10	5	6	-2.0963	10.0640	20	13	14	7.0812	3.4961

Primjenom GSA metode prvi generator iz tabele 7.21 ima najveći uticaj na IEEE testni sistem sa četrnaest čvorova uvažavajući kriterijum minimalnih troškova proizvodnje. Sa druge strane, opterećenje na svim generatorima je izbalansirano ako se u obzir uzme kriterijum minimalnih gubitaka u mreži (tabela 7.23). Posljednje tabele (tabele 7.25-7.28) se odnose na najbolja rješenja dobijena testiranjem GSA metoda na IEEE testnom sistemu sa trideset čvorova.

Tabela 7.25 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p.u.)	θ (rad)	Р _g (MW)	Q _g (MVAr)	Br. čvora	U (p.u.)	θ (rad)	Р _g (MW)	Q _g (MVAr)
1	1.0000	0.0000	175.7320	- 0.92730	16	0.9924	- 0.2003	0.00	0.00
2	1.0552	- 0.0599	45.90400	17.9894	17	0.9878	- 0.2055	0.00	0.00
3	1.0459	- 0.0936	0.000000	0.00000	18	0.9809	- 0.2221	0.00	0.00
4	1.0389	- 0.1124	0.000000	0.00000	19	0.9787	- 0.2252	0.00	0.00
5	1.0206	- 0.1725	21.29320	21.1046	20	0.9833	- 0.2212	0.00	0.00
6	1.0328	- 0.1309	0.000000	0.00000	21	0.9828	- 0.2110	0.00	0.00
7	1.0201	- 0.1570	0.000000	0.00000	22	0.9840	- 0.2109	0.00	0.00
8	1.0371	- 0.1359	24.36900	44.2766	23	0.9869	- 0.2202	0.00	0.00
9	0.9988	- 0.1673	0.000000	0.00000	24	0.9825	- 0.2217	0.00	0.00
10	0.9918	- 0.2012	0.000000	0.00000	25	1.0028	- 0.2195	0.00	0.00
11	1.0097	- 0.1406	12.94950	5.47490	26	0.9848	- 0.2270	0.00	0.00
12	1.0045	- 0.1899	0.000000	0.00000	27	1.0242	- 0.2130	0.00	0.00
13	1.0288	- 0.1732	12.28160	17.9708	28	1.0276	- 0.1397	0.00	0.00
14	0.9921	- 0.2074	0.000000	0.00000	29	1.0082	- 0.2364	0.00	0.00
15	0.9902	- 0.2108	0.000000	0.00000	30	0.9951	- 0.2508	0.00	0.00

Tabela 7.26 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	117.8469	-3.4819	22	12	13	-12.2816	-17.3442
2	1	3	57.8850	2.5546	23	12	14	7.4817	1.3481
3	2	4	33.0719	-2.1231	24	12	15	17.2053	2.4799
4	2	5	62.6806	4.6101	25	12	16	6.6486	2.9715
5	2	6	43.9872	-1.6163	26	14	15	1.2117	-0.3985
6	3	4	54.1629	0.5221	27	15	18	5.7203	1.4137
7	4	6	48.4666	1.2967	28	15	23	4.2943	-0.5209
8	4	12	30.2540	-2.2737	29	16	17	3.0989	1.0670
9	5	7	-11.9121	4.1352	30	18	19	2.4824	0.4363
10	6	7	35.1012	4.0037	31	19	20	-7.0218	-2.9722
11	6	8	8.9501	-13.5868	32	21	22	-2.5298	-3.6795
12	6	9	17.5621	2.4615	33	22	24	4.5392	-2.0385
13	6	10	12.7071	4.3903	34	23	24	1.0752	1.1074
14	6	28	16.8641	3.4873	35	24	25	-3.1183	-4.2765
15	8	28	3.2908	1.5546	36	25	26	3.5460	2.3687
16	9	10	30.5116	6.8832	37	25	27	-6.7190	-6.7408
17	9	11	-12.9495	-5.0716	38	27	29	6.1932	0.7194
18	10	17	5.9236	2.4266	39	27	30	7.0812	1.2918
19	10	20	9.3252	-0.0332	40	28	27	20.0918	10.7658
20	10	21	15.0591	4.9302	41	29	30	3.7117	0.9716
21	10	22	7.1109	1.7275					

Tabela 7.27 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br.	U	θ	P_{g}	Q_{q}	Br.	U	θ	P_{q}	Q_{g}
čvora	(p . u .)	(rad)	(MW)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVÅr)
1	1.0000	0.0000	79.0672	-10.9233	16	1.0264	-0.1001	0.00	0.00
2	1.0655	-0.0252	72.3770	12.3980	17	1.0267	-0.1118	0.00	0.00
3	1.0625	-0.0501	0.00000	0.00000	18	1.0128	-0.1209	0.00	0.00
4	1.0596	-0.0595	0.00000	0.00000	19	1.0114	-0.1258	0.00	0.00
5	1.0333	-0.1107	32.8906	14.4321	20	1.0162	-0.1232	0.00	0.00
6	1.0522	-0.0702	0.00000	0.00000	21	1.0219	-0.1196	0.00	0.00
7	1.0370	-0.0956	0.00000	0.00000	22	1.0224	-0.1194	0.00	0.00
8	1.0539	-0.0703	34.8901	32.8647	23	1.0186	-0.1211	0.00	0.00
9	1.0379	-0.0764	0.00000	0.00000	24	1.0133	-0.1282	0.00	0.00
10	1.0321	-0.1105	0.00000	0.00000	25	1.0248	-0.1359	0.00	0.00
11	1.0723	-0.0203	29.9993	18.5803	26	1.0072	-0.1431	0.00	0.00
12	1.0335	-0.0829	0.00000	0.00000	27	1.0407	-0.1357	0.00	0.00
13	1.0612	-0.0338	38.4784	21.9292	28	1.0483	-0.0766	0.00	0.00
14	1.0223	-0.1015	0.00000	0.00000	29	1.0288	-0.1602	0.00	0.00
15	1.0205	-0.1069	0.00000	0.00000	30	1.0144	-0.1733	0.00	0.00
Tabela 7.28 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog GSA metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	48.6394	-7.2059	22	12	13	-38.4784	-19.4908
2	1	3	30.4279	-3.7174	23	12	14	8.0247	0.7510
3	2	4	21.3257	-5.0737	24	12	15	19.7273	0.5599
4	2	5	49.1987	5.2221	25	12	16	8.9435	-0.4729
5	2	6	28.3936	-2.8205	26	14	15	1.7504	-1.0047
6	3	4	27.6627	-1.7678	27	15	18	6.7775	0.3260
7	4	6	31.6489	9.3466	28	15	23	6.2496	-2.0762
8	4	12	9.4170	-13.6545	29	16	17	5.3725	-2.4221
9	5	7	-13.1411	0.9300	30	18	19	3.5302	-0.6706
10	6	7	36.3516	7.1478	31	19	20	-5.9779	-4.0869
11	6	8	-0.8914	-4.5084	32	21	22	-1.6351	-1.4737
12	6	9	3.1515	-10.0898	33	22	24	6.0283	1.3991
13	6	10	8.2607	14.8032	34	23	24	3.0080	0.5458
14	6	28	12.6407	2.7123	35	24	25	0.2823	-3.7007
15	8	28	3.9969	-0.6520	36	25	26	3.5440	2.3657
16	9	10	33.1508	6.0135	37	25	27	-3.2870	-6.1106
17	9	11	-29.9993	-16.3279	38	27	29	6.1957	-0.2133
18	10	17	3.6670	5.2098	39	27	30	7.0678	0.9208
19	10	20	8.2710	4.2217	40	28	27	16.6006	8.0961
20	10	21	15.9629	6.7388	41	29	30	3.7177	1.3286
21	10	22	7.7106	2.9700					

IEEE testni sistem sa trideset čvorova je iskorišćen za proračun parametara sistema primjenom GSA metode. Spomenuti podaci o sistemu koji se odnose na proračunato rješenje sa najmanjom vrijednošću kriterijumske funkcije, su prikazani u prethodnim tabelama. Slično kao i kod ABC metode, iz navedenih tabela se može uočiti različito opterećenje na generatorima, u zavisnosti od korišćenog kriterijuma. Naime, prvi generator proizvodi najveću količinu električne energije kod kriterijuma minimalnih troškova proizvodnje, dok su proizvodnje svih generatora približno jednake ako je posmatran kriterijum minimalnih gubitaka u mreži.

7.1.3. Rezultati dobijeni primjenom WDO metoda

U ovom dijelu su prikazani rezultati dobijeni primjenom WDO metode na IEEE testne sisteme. Slično kao i za prethodne metode, na početku su prikazani rezultati dobijeni primjenom WDO metode na IEEE testne šeme sa devet, četrnaest i trideset čvorova uvažavajući kriterijume minimalnih troškova proizvodnje i minimalnih gubitaka u mreži. Spomenuti rezultati su proračunati uzastopnim pokretanjem algoritma WDO metode, i kao takvi prikazani u tabelama 7.29 i 7.30.

Tabela 7.29 Rezultati dobijeni primjenom WDO metode uvažavajući kriterijum minimalnih troškova proizvodnje

Red. br.	IEEE šem	a sa 9 čvo	orova	IEEE š	šema sa 1 vorova	IEEE šema sa 30 čvorova			
	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.
1	5295.198	1.8254	96	8097.015	6.4582	91	801.425	17.1243	100
2	5295.497	1.6875	98	8098.234	6.3499	89	801.206	18.2546	90
3	5294.988	1.5462	100	8097.543	5.9822	100	801.370	19.4825	94
4	5295.597	1.8993	94	8096.997	6.5525	96	801.512	17.0078	99
5	5294.905	1.4589	93	8097.473	6.7685	95	801.398	18.8103	99
6	5294.803	1.7256	95	8097.364	6.4441	98	801.312	18.9465	98
7	5294.879	1.6533	95	8097.801	5.6825	81	801.594	19.2153	83
8	5295.825	1.7985	96	8097.697	5.8368	100	801.298	19.0679	85
9	5295.251	1.6223	100	8097.113	6.4648	84	801.704	18.9313	89
10	5295.138	1.6785	89	8096.881	5.7824	86	802.021	19.4638	100

Tabela 7.30 Rezultati dobijeni primjenom WDO metode uvažavajući kriterijum minimalnih gubitaka u mreži

Red.	IEEE šema	a sa 9 čvo	rova	IEEE š ČV	ema sa 14 vorova	4	IEEE šema sa 30 čvorova			
br.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	
1	2.3162	2.1466	96	0.6136	6.2844	89	3.5028	19.0075	88	
2	2.3157	2.3468	100	0.6142	6.1978	95	3.5822	19.6466	92	
3	2.3182	2.5666	89	0.6138	6.8254	94	3.6488	18.8336	87	
4	2.3178	2.4822	100	0.6145	6.6634	96	3.6363	18.6854	94	
5	2.3188	2.2113	83	0.6143	6.2422	96	3.4692	19.2466	94	
6	2.3184	2.4644	100	0.6137	6.4685	98	3.5646	19.3465	100	
7	2.3165	2.0119	100	0.6139	6.5646	88	3.5281	18.9932	93	
8	2.3179	1.9788	88	0.6144	6.6895	93	3.6824	19.5913	100	
9	2.3192	1.9993	94	0.6141	6.8893	99	3.6526	18.8256	95	
10	2.3189	2.6894	100	0.6147	6.2173	98	3.6256	18.7852	96	

Iz prethodne dvije tabele se mogu uočiti rezultati dobijeni primjenom WDO metode na IEEE testne sisteme sa devet, četrnaest i trideset čvorova uvažavajući kriterijume minimalnih troškova proizvodnje i minimalnih gubitaka u mreži. U skladu sa rješenjima najmanje vrijednosti kriterijumske funkcije, dobijeni primjenom WDO metode na IEEE testni sistem sa devet čvorova, formirane su sljedeće tabele (tabele 7.31.-7.34).

Tabela 7.31 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g (MVAr)$	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.0000	0.0000	83.58300	-5.6388	0.0	0.0
2	1.0640	0.0802	131.4018	93.7356	0.0	0.0
3	0.9785	0.0895	102.8277	-37.6962	0.0	0.0
4	0.9220	-0.0570	0.000000	0.00000	0.0	0.0
5	0.9208	-0.1090	0.000000	0.00000	125	50
6	0.9092	-0.0915	0.000000	0.00000	90	30
7	1.0145	0.0041	0.000000	0.00000	0.0	0.0
8	0.9713	-0.0323	0.000000	0.00000	100	35
9	0.9439	0.0201	0.000000	0.00000	0.0	0.0

Tabela 7.32 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	83.5830	-5.6388
2	4	5	51.5269	-10.9374
3	4	6	32.7720	0.60970
4	5	7	-72.5030	-48.4335
5	6	9	-56.7729	-17.2054
6	2	7	131.0305	93.7356
7	7	8	56.2889	47.4750
8	8	9	-43.8208	22.9556
9	3	9	102.5018	-37.6962

.

Tabela 7.33 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_{g}(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	155.7101	17.5299	0.0	0.0
2	1.0237	-0.0358	91.9166	-6.07500	0.0	0.0
3	1.0671	-0.0530	69.6889	-22.4328	0.0	0.0
4	1.0991	-0.0739	0.00000	0.00000	0.0	0.0
5	1.0752	-0.1371	0.00000	0.00000	125	50
6	1.0877	-0.1237	0.00000	0.00000	90	30
7	1.0948	-0.0903	0.00000	0.00000	0.0	0.0
8	1.0850	-0.1238	0.00000	0.00000	100	35
9	1.0969	-0.0873	0.00000	0.00000	0.0	0.0

Tabela 7.34 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	4	155.7101	17.5299
2	4	5	90.4995	12.3652
3	4	6	65.2107	-6.4135
4	5	7	-35.2223	-22.9669
5	6	9	-25.3893	-20.7703
6	2	7	91.9166	-6.0750
7	7	8	56.3432	0.1564
8	8	9	-43.8878	-19.1002
9	3	9	69.6889	-22.4328

Usljed jednostavnosti IEEE testne šeme sa devet čvorova, može se zapaziti da ni najbolje rješenje, kao ni vrijeme potrebno za izvršenje proračuna optimizacije, ne odstupaju mnogo od onih koji su dobijeni primjenom predhodnih metoda.

Rezultati najboljih rješenja, koji su dobijeni optimizacijom IEEE testnog sistema sa četrnaest čvorova primjenom WDO metode, su prikazani u četri tabele (tabele 7.35-7.38).

Tabela 7.35 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_{g}(MVAr)$	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.0000	0.0000	195.685	3.58500	0.00	0.00
2	1.0263	-0.0725	36.0956	29.3925	21.7	12.7
3	0.9903	0.1789	26.3166	15.3459	94.2	19.0
4	0.9972	-0.1558	0.00000	0.00000	47.8	-3.90
5	1.0006	-0.1325	0.00000	0.00000	7.60	1.60
6	0.9903	-0.2279	5.31600	9.49440	11.2	7.50
7	0.9944	-0.2084	0.00000	0.00000	0.00	0.00
8	1.0209	-0.1991	5.37600	15.3869	0.00	0.00
9	0.9798	-0.2426	0.00000	0.00000	29.5	16.6
10	0.9737	-0.2458	0.00000	0.00000	9.00	5.80
11	0.9782	-0.2396	0.00000	0.00000	3.50	1.80
12	0.9746	-0.2453	0.00000	0.00000	6.10	1.60
13	0.9697	-0.2470	0.00000	0.00000	13.5	5.80
14	0.9559	-0.2649	0.00000	0.00000	14.9	5.00

Tabela 7.36 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	131.1151	-4.0402	11	6	11	6.99930	2.7374
2	1	5	64.5699	7.6251	12	6	12	7.73040	2.4318
3	2	3	56.4685	5.8508	13	6	13	17.5818	6.8612
4	2	4	49.2123	0.8957	14	7	8	-5.3760	-14.9379
5	2	5	36.7915	2.3045	15	7	9	30.2161	13.6779
6	3	4	-12.8673	0.5318	16	9	10	5.58500	5.05220
7	4	5	-52.3389	9.1543	17	9	14	9.72070	4.18590
8	4	7	24.8401	0.0483	18	10	11	-3.43380	-0.79770
9	4	9	14.5895	-3.4876	19	12	13	1.54870	0.66050
10	5	6	38.1955	14.0439	20	13	14	5.38310	1.24250

Tabela 7.37 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	0.89640	8.01380	0.00	0.00
2	1.0251	0.0025	34.3584	5.21290	21.7	12.7
3	1.0158	-0.0009	92.6106	12.2864	94.2	19.0
4	1.0146	-0.0027	0.00000	0.00000	47.8	-3.90
5	1.0200	-0.0029	0.00000	0.00000	7.60	1.60
6	1.0278	0.0092	42.9333	23.1580	11.2	7.50
7	1.0249	0.0666	0.00000	0.00000	0.00	0.00
8	1.0171	0.2173	88.8149	2.16730	0.00	0.00
9	1.0243	0.0111	0.00000	0.00000	29.5	16.6
10	1.0175	0.0053	0.00000	0.00000	9.00	5.80
11	1.0192	0.0048	0.00000	0.00000	3.50	1.80
12	1.0131	-0.0057	0.00000	0.00000	6.10	1.60
13	1.0092	-0.0063	0.00000	0.00000	13.5	5.80
14	0.9991	-0.0152	0.00000	0.00000	14.9	5.00

Tabela 7.38 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	-1.4423	6.5148	11	6	11	3.6201	2.7315
2	1	5	2.3388	1.4990	12	6	12	7.2806	2.4803
3	2	3	2.7936	1.8234	13	6	13	15.8156	6.7768
4	2	4	4.6084	2.8101	14	7	8	-88.8149	11.2729
5	2	5	3.7979	-0.0797	15	7	9	52.9976	2.0365
6	3	4	1.1931	-0.3759	16	9	10	8.9308	4.9930
7	4	5	-3.5125	-12.0441	17	9	14	11.8737	4.1034
8	4	7	-35.8173	16.2159	18	10	11	-0.1009	-0.8913
9	4	9	-2.6932	6.9442	19	12	13	1.1124	0.7371
10	5	6	-5.0170	-3.5772	20	13	14	3.2381	1.3453

Razmatranjem prethodnih rezultata dobijenih primjenom ABC i GSA populacionih metoda na IEEE testni sistem sa četrnaest čvorova, razumno je da će najveći uticaj imati generator u sabirnici jedan kada je korišćen kriterijum minimalnih troškova proizvodnje, a skoro ravnomjerno opterećeni svi generatori kada je korišćen kriterijum minimalnih gubitaka u mreži. Ovakvo rezonsko posmatranje problematike kojom se bavi ovaj rad se može i potvrditi posmatranjem tabela 7.35 i 7.37.

Rezultati optimizacije proračunati primjenom WDO metode na najsloženije testiranom sistemu kojm se bavi ovaj rad (IEEE testni sistem sa trideset čvorova) su prikazani u tabelama 7.39-7.42.

Tabela 7.39 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p.u.)	θ (rad)	Р _g (MW)	Q _g (MVAr)	Br. čvora	U (p.u.)	θ (rad)	P_g (MW)	Q _g (MVAr)
1	1.0000	0.0000	179.5095	4.91220	16	1.0553	- 0.1878	0.00	0.00
2	1.0666	- 0.0598	44.00790	19.5301	17	1.0575	- 0.1945	0.00	0.00
3	1.0526	- 0.0913	0.000000	0.00000	18	1.0480	- 0.2085	0.00	0.00
4	1.0442	- 0.1096	0.000000	0.00000	19	1.0478	- 0.2117	0.00	0.00
5	1.0356	- 0.1720	20.50730	26.3372	20	1.0531	- 0.2085	0.00	0.00
6	1.0410	- 0.1290	0.000000	0.00000	21	1.0544	- 0.1999	0.00	0.00
7	1.0313	- 0.1554	0.000000	0.00000	22	1.0553	- 0.1998	0.00	0.00
8	1.0396	- 0.1332	21.81200	28.3991	23	1.0548	- 0.2077	0.00	0.00
9	1.0567	- 0.1606	0.000000	0.00000	24	1.0534	- 0.2098	0.00	0.00
10	1.0619	- 0.1908	0.000000	0.00000	25	1.0700	- 0.2075	0.00	0.00
11	1.0965	- 0.1344	14.61750	21.1519	26	1.0532	- 0.2141	0.00	0.00
12	1.0600	- 0.1759	0.000000	0.00000	27	1.0885	- 0.2016	0.00	0.00
13	1.0450	- 0.1608	12.00000	- 11.1261	28	1.0347	- 0.1375	0.00	0.00
14	1.0520	- 0.1925	0.000000	0.00000	29	1.0713	- 0.2212	0.00	0.00
15	1.0534	- 0.1977	0.000000	0.00000	30	1.0600	- 0.2344	0.00	0.00

Tabela 7.40 Rezultati najboljeg rješenja na vodovimsa IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	121.1041	-1.2560	22	12	13	-12.0000	11.4695
2	1	3	58.4054	6.1682	23	12	14	7.1771	-0.0690
3	2	4	33.1169	1.5904	24	12	15	17.0510	-3.1278
4	2	5	63.5625	2.6972	25	12	16	6.4211	-0.5186
5	2	6	44.3493	0.2727	26	14	15	0.9200	-1.7864
6	3	4	54.6726	4.1784	27	15	18	5.4466	-0.0129
7	4	6	49.4253	-6.0567	28	15	23	4.1400	-2.7573
8	4	12	29.8491	12.5236	29	16	17	2.8861	-2.3920
9	5	7	-11.8170	7.5670	30	18	19	2.2180	-0.9713
10	6	7	35.0116	0.4904	31	19	20	-7.2855	-4.3782
11	6	8	11.0162	-0.0184	32	21	22	-2.2883	-3.1285
12	6	9	16.2081	-22.9468	33	22	24	4.9268	-2.0156
13	6	10	13.2361	12.3568	34	23	24	0.9177	0.1107
14	6	28	17.0253	5.4705	35	24	25	-2.8858	-3.6525
15	8	28	2.8147	-0.6925	36	25	26	3.5403	2.3601
16	9	10	30.8256	-4.5516	37	25	27	-6.4628	-6.0769
17	9	11	-14.6175	-20.0082	38	27	29	6.1756	1.2913
18	10	17	6.1381	3.2526	39	27	30	7.0691	1.4910
19	10	20	9.5841	0.2933	40	28	27	19.7827	10.5815
20	10	21	15.2880	3.6646	41	29	30	3.7017	0.7308
21	10	22	7.2514	1.1879					

Tabela 7.41 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br.	U	θ	P_{g}	Q_{g}	Br.	U	θ	P_{g}	Q_{g}
čvora	(p . u .)	(rad)	(MW)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVAr)
1	1.0000	0.0000	64.0116	2.14250	16	1.0599	-0.0876	0.00	0.00
2	1.0909	-0.0173	76.8996	16.4938	17	1.0590	-0.0998	0.00	0.00
3	1.0786	-0.0405	0.00000	0.00000	18	1.0479	-0.1079	0.00	0.00
4	1.0735	-0.0479	0.00000	0.00000	19	1.0476	-0.1136	0.00	0.00
5	1.0659	-0.0857	48.6027	21.4108	20	1.0527	-0.1117	0.00	0.00
6	1.0667	-0.0572	0.00000	0.00000	21	1.0553	-0.1080	0.00	0.00
7	1.0590	-0.0773	0.00000	0.00000	22	1.0558	-0.1078	0.00	0.00
8	1.0736	-0.0589	34.2691	47.4192	23	1.0489	-0.1060	0.00	0.00
9	1.0875	-0.0701	0.00000	0.00000	24	1.0465	-0.1154	0.00	0.00
10	1.0657	-0.0997	0.00000	0.00000	25	1.0528	-0.1211	0.00	0.00
11	1.0676	-0.0279	23.5239	-9.7329	26	1.0358	-0.1279	0.00	0.00
12	1.0681	-0.0704	0.00000	0.00000	27	1.0653	-0.1201	0.00	0.00
13	1.0779	-0.0223	39.5623	8.48330	28	1.0657	-0.0641	0.00	0.00
14	1.0563	-0.0880	0.00000	0.00000	29	1.0597	-0.1464	0.00	0.00
15	1.0536	-0.0930	0.00000	0.00000	30	1.0431	-0.1575	0.00	0.00

Tabela 7.42 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog WDO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	36.7338	-0.9571	22	12	13	-39.5623	-6.5107
2	1	3	27.2777	3.0996	23	12	14	8.2511	1.0315
3	2	4	21.9641	1.8407	24	12	15	20.3947	1.8025
4	2	5	41.3566	2.7753	25	12	16	9.7593	-0.1231
5	2	6	28.3972	3.9013	26	14	15	1.9771	-0.7236
6	3	4	24.5873	5.5438	27	15	18	7.2052	-0.7209
7	4	6	28.5970	8.9697	28	15	23	6.7141	-0.8673
8	4	12	10.0428	1.1607	29	16	17	6.1804	-2.0890
9	5	7	-4.9301	7.1516	30	18	19	3.9546	-1.7241
10	6	7	27.9516	0.1843	31	19	20	-5.5562	-5.1460
11	6	8	-0.3589	-17.8344	32	21	22	-1.7474	-1.4811
12	6	9	7.7187	34.9904	33	22	24	5.8482	1.7408
13	6	10	8.7455	1.8379	34	23	24	3.4728	-0.7376
14	6	28	12.4316	-2.4999	35	24	25	0.5674	-2.3259
15	8	28	3.8786	0.5046	36	25	26	3.5416	2.3621
16	9	10	31.2426	22.0577	37	25	27	-2.9840	-4.7052
17	9	11	-23.5239	10.9157	38	27	29	6.2080	-1.7728
18	10	17	2.8685	7.3250	39	27	30	7.0509	0.3023
19	10	20	7.8325	3.1159	40	28	27	16.2736	4.2553
20	10	21	15.8465	7.4345	41	29	30	3.7273	1.9334
21	10	22	7.6406	3.3146					

S obzirom da je proizvodnja prvog generatora najveća kada se posmatra kriterijum minimalnih troškova proizvodnje (tabela 7.39), to su i tokovi aktivnih snaga najveći kroz vodove čiji je jedan kraj sabirnica navedenog generatora. Kroz tabele 7.39-7.42 se može zaključiti da WDO metoda proračunava približno ista rješenja kao i prethodna dva metoda (ABC i GSA), s tim što mu je vrijeme konvergencije malo bolje od ostalih metoda.

7.1.4. Rezultati dobijeni primjenom PSO metoda

PSO metod je jedan od najčešće korišćenih populacionih metoda u rješavanju optimizacionih problema, a koji se mogu pronaći u mnogim literaturama. Razlog velike primjene ove metode jeste njegov veliki opseg rješenja. Naime, u jednom slučaju PSO metod može proračunati bolje rješenje od preostale tri metode (ABC, GSA i WDO), dok u drugom slučaju isti može proračunati gore rješenje. Drugim riječima, PSO se može smatrati jednim od najnepredvidljivijih populacionih metoda. U nastavku ovog poglavlja su prikazane tabele sa rezultatima koji se odnose na proračunata rješenja primjenom PSO metode, dobijenih pokretanjem programa 10 puta uzastopno. Rezultati iz tabele 7.43, odnosno iz tabele 7.44, su proračunati uvažavajući kriterijum minimalnih troškova proizvodnje, odnosno kriterijum minimalnih gubitaka u mreži, respektivno.

Tabela 7.43 Rezultati dobijeni primjenom PSO metode uvažavajući kriterijum minimalnih troškova proizvodnje

Red. br.	IEEE šem	a sa 9 čvo	orova	IEEE š	šema sa 1 vorova	4	IEEE šema sa 30 čvorova			
	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	$F_{obj}\left[rac{\$}{h} ight]$	Vrijeme [s]	Br. iter.	
1	5293.798	1.9664	93	8189.425	5.2119	93	803.986	16.9978	99	
2	5292.998	2.1935	94	8192.286	5.4882	96	804.255	18.0977	91	
3	5294.001	1.8256	93	8191.744	5.4399	91	804.612	17.6458	98	
4	5292.248	2.3154	96	8193.889	5.1824	87	803.823	17.9982	100	
5	5293.887	2.2253	100	8189.983	5.2464	95	805.034	17.8255	85	
6	5294.348	2.0782	100	8194.108	5.1664	87	804.882	17.6469	89	
7	5294.118	2.2892	84	8192.442	5.1934	91	804.531	18.2368	100	
8	5292.816	2.3433	86	8188.867	5.4636	100	804.42	17.4825	87	
9	5291.305	2.0310	100	8193.416	5.5146	91	804.122	18.3485	93	
10	5293.832	1.9994	98	8184.682	5.2413	96	803.765	17.9899	92	

Tabela 7.44 Rezultati dobijeni primjenom PSO metode uvažavajući kriterijum minimalnih gubitaka u mreži

Red.	IEEE šema	a sa 9 čvo	rova	IEEE š čv	ema sa 14 vorova	4	IEEE šema sa 30 čvorova			
br.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	F _{obj} [MW]	Vrijeme [s]	Br. iter.	
1	2.3690	2.3453	91	1.3825	6.0113	85	3.8213	16.2993	80	
2	2.4126	2.6466	94	1.3284	6.1814	86	3.7984	16.2845	82	
3	2.4587	2.6998	93	1.3936	6.2779	88	3.7992	16.5424	92	
4	2.4983	2.7133	87	1.3267	6.1338	91	3.8186	16.3469	87	
5	2.4878	2.7211	89	1.3726	5.8244	87	3.7863	16.6648	86	
6	2.3824	2.8771	100	1.3781	6.2488	100	3.8421	17.8839	94	
7	2.4678	2.8915	86	1.3948	5.8943	94	3.8611	18.1321	100	
8	2.4183	2.1445	100	1.3884	6.1634	96	3.8562	16.6998	96	
9	2.4434	2.5327	83	1.3762	5.9883	96	3.7946	17.4852	98	
10	2.3998	2.3304	94	1.3550	5.9675	100	3.8002	16.9986	97	

Iz priloženih tabela (tabele 7.41 i 7.43) jasno je da su rješenja proračunata PSO metodom približna rješenjima proračunatim primjenom ostala tri metoda (ABC, GSA i WDO). Proračunati parametri za IEEE testni sistem sa devet čvorova, uvažavajući oba kriterijuma, su prikazani u tabelama 7.45-7.48.

Tabela 7.45 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_{g}(MW)$	$Q_g(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	82.3975	3.7023	0.0	0.0
2	1.0227	0.1130	142.6882	19.6787	0.0	0.0
3	1.0392	0.0654	92.7123	17.4035	0.0	0.0
4	0.9311	-0.0547	0.00000	0.00000	0.0	0.0
5	0.9096	-0.1031	0.00000	0.00000	125	50
6	0.9306	-0.0900	0.00000	0.00000	90	30
7	0.9685	0.0272	0.00000	0.00000	0.0	0.0
8	0.9610	-0.0236	0.00000	0.00000	100	35
9	0.9844	0.0100	0.00000	0.00000	0.0	0.0

Tabela 7.46 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	82.3975	3.70230
2	4	5	50.3948	11.0987
3	4	6	32.3221	-11.8088
4	5	7	-73.8898	-26.5830
5	6	9	-56.9595	-29.1523
6	2	7	142.2488	19.6787
7	7	8	66.2109	-3.0569
8	8	9	-33.6979	-27.4344
9	3	9	92.3743	17.4035

Tabela 7.47 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_g (MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	149.0327	15.4247	0.0	0.0
2	1.0081	-0.0447	75.32010	-4.7590	0.0	0.0
3	1.0834	-0.0203	93.01620	-22.7189	0.0	0.0
4	1.1000	-0.0707	0.000000	0.00000	0.0	0.0
5	1.0772	-0.1349	0.000000	0.00000	125	50
6	1.0893	-0.1139	0.000000	0.00000	90	30
7	1.0984	-0.0909	0.000000	0.00000	0.0	0.0
8	1.0884	-0.1150	0.000000	0.00000	100	35
9	1.1000	-0.0659	0.000000	0.00000	0.0	0.0

Tabela 7.48 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	4	149.0327	15.4247
2	4	5	92.0529	10.9008
3	4	6	56.9798	-6.0603
4	5	7	-33.6858	-24.5189
5	6	9	-33.4782	-19.6054
6	2	7	75.3201	-4.75900
7	7	8	41.3088	1.79370
8	8	9	-58.8196	-16.4800
9	3	9	93.0162	-22.7189

Sljedeći sistem na kojem je testiran PSO metod je IEEE testni sistem sa četrnaest čvorova. U tabelama 7.49-7.52 su prikazani parametri sistema za najbolje rješenje proračunato PSO metodom.

Tabela 7.49 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	heta (rad)	$P_g(MW)$	$Q_g(MVAr)$	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	164.8209	0.04430	0.00	0.00
2	0.9887	-0.0634	32.65570	3.72280	21.7	12.7
3	0.9764	-0.1350	67.86950	19.3230	94.2	19.0
4	0.9717	-0.1491	0.000000	0.00000	47.8	-3.90
5	0.9748	-0.1292	0.000000	0.00000	7.60	1.60
6	0.9919	-0.2337	1.058400	21.2412	11.2	7.50
7	1.0058	-0.2122	0.000000	0.00000	0.00	0.00
8	10448	-0.2121	0.015400	23.0985	0.00	0.00
9	0.9895	-0.2455	0.000000	0.00000	29.5	16.6
10	0.9821	-0.2492	0.000000	0.00000	9.00	5.80
11	0.9833	-0.2443	0.000000	0.00000	3.50	1.80
12	0.9768	-0.2507	0.000000	0.00000	6.10	1.60
13	0.9726	-0.2524	0.000000	0.00000	13.5	5.80
14	0.9628	-0.2686	0.000000	0.00000	14.9	5.00

Tabela 7.50 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	106.9647	-1.9733	11	6	11	5.8847	1.5133
2	1	5	57.85620	2.0176	12	6	12	7.5478	2.2933
3	2	3	34.64650	-2.9909	13	6	13	16.9764	6.2114
4	2	4	45.4791	-5.1066	14	7	8	-0.0154	-22.2374
5	2	5	35.6111	-4.2583	15	7	9	30.1331	15.3854
6	3	4	7.73870	-0.8714	16	9	10	6.6829	6.2448
7	4	5	-42.5204	6.6846	17	9	14	10.4920	4.9453
8	4	7	30.1177	-4.8800	18	10	11	-2.3443	0.3726
9	4	9	16.5418	-3.2608	19	12	13	1.3697	0.5315
10	5	6	40.5505	0.5242	20	13	14	4.6218	0.5057

Tabela 7.51 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_{g}(MW)$	Q _g (MVAr)	P _{pot} (MW)	Q _{pot} (MVAr)
1	1.0000	0.0000	0.02220	5.06900	0.00	0.00
2	1.0231	0.0010	40.4571	-2.26050	21.7	12.7
3	1.0064	-0.0333	57.0273	10.3567	94.2	19.0
4	1.0225	-0.0039	0.00000	0.00000	47.8	-3.90
5	1.0262	0.0032	0.00000	0.00000	7.60	1.60
6	1.0387	0.0711	82.8945	23.1338	11.2	7.50
7	1.0126	0.0753	0.00000	0.00000	0.00	0.00
8	1.0299	0.2107	79.9256	15.5605	0.00	0.00
9	1.0126	0.0310	0.00000	0.00000	29.5	16.6
10	1.0090	0.0328	0.00000	0.00000	9.00	5.80
11	1.0196	0.0495	0.00000	0.00000	3.50	1.80
12	1.0227	0.0533	0.00000	0.00000	6.10	1.60
13	1.0163	0.0500	0.00000	0.00000	13.5	5.80
14	0.9953	0.0204	0.00000	0.00000	14.9	5.00

Tabela 7.52 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	1.1778	6.2798	11	6	11	13.2908	3.7274
2	1	5	-1.1556	-1.2109	12	6	12	8.5729	2.4235
3	2	3	18.8860	2.1880	13	6	13	20.8371	7.4071
4	2	4	2.7314	-2.3198	14	7	8	-79.9256	-4.5505
5	2	5	-1.6979	-3.0393	15	7	9	41.3040	0.9544
6	3	4	-18.4559	-2.6573	16	9	10	-0.5419	4.4158
7	4	5	-18.4914	-2.9219	17	9	14	5.7021	3.7905
8	4	7	-38.6216	-0.5275	18	10	11	-9.5480	-1.4005
9	4	9	-6.6438	6.6514	19	12	13	2.3831	0.6353
10	5	6	-28.9937	-0.1018	20	13	14	9.4069	1.6403

Parametri sistema koji su nastali kao proizvod primjene PSO metoda na IEEE testni sistem sa trideset čvorova uvažavajaći kriterijum minimalnih troškova proizvodnje, odnosno kriterijum minimalnih gubitaka u mreži, su prikazani u tabelama 7.53-7.56.

Tabela 7.53 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p.u.)	θ (rad)	Р _g (MW)	Q _g (MVAr)	Br. čvora	U (p.u.)	θ (rad)	P_g (MW)	Q _g (MVAr)
1	1.0000	0.0000	182.6558	15.8795	16	1.0782	- 0.1877	0.00	0.00
2	1.0764	- 0.0583	49.90860	25.9872	17	1.0638	- 0.1918	0.00	0.00
3	1.0563	- 0.0905	0.000000	0.00000	18	1.0647	- 0.2062	0.00	0.00
4	1.0460	- 0.1087	0.000000	0.00000	19	1.0590	- 0.2088	0.00	0.00
5	1.0343	- 0.1733	15.00000	19.0209	20	1.0612	- 0.2054	0.00	0.00
6	1.0462	- 0.1281	0.000000	0.00000	21	1.0526	- 0.1960	0.00	0.00
7	1.0338	- 0.1554	0.000000	0.00000	22	1.0531	- 0.1956	0.00	0.00
8	1.0438	- 0.1320	21.41690	25.2266	23	1.0619	- 0.2017	0.00	0.00
9	1.0424	- 0.1600	0.000000	0.00000	24	1.0466	- 0.2028	0.00	0.00
10	1.0611	- 0.1873	0.000000	0.00000	25	1.0531	- 0.2020	0.00	0.00
11	1.0999	- 0.1379	12.19930	30.5395	26	1.0360	- 0.2088	0.00	0.00
12	1.0999	- 0.1797	0.000000	0.00000	27	1.0654	- 0.1970	0.00	0.00
13	1.1000	- 0.1658	12.00000	0.1639	28	1.0409	- 0.1359	0.00	0.00
14	1.0849	- 0.1948	0.000000	0.00000	29	1.0465	- 0.2168	0.00	0.00
15	1.0794	- 0.1967	0.000000	0.00000	30	1.0355	- 0.2309	0.00	0.00

Tabela 7.54 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	122.5711	4.4861	22	12	13	-12.0000	0.0027
2	1	3	60.0847	11.3934	23	12	14	8.2671	2.5218
3	2	4	35.2782	5.9663	24	12	15	19.3820	7.5459
4	2	5	66.9756	8.2338	25	12	16	8.5722	7.9478
5	2	6	46.1326	2.6591	26	14	15	1.9905	0.7638
6	3	4	56.2643	9.1182	27	15	18	6.9169	3.9246
7	4	6	47.4912	-14.0639	28	15	23	6.0110	6.4111
8	4	12	35.4213	29.5512	29	16	17	4.9655	5.9234
9	5	7	-14.0980	5.0407	30	18	19	3.6588	2.9060
10	6	7	37.3439	3.1529	31	19	20	-5.8535	-0.5189
11	6	8	10.9731	2.2690	32	21	22	-2.3078	-1.3540
12	6	9	15.2147	-41.5164	33	22	24	4.9016	0.7092
13	6	10	13.1237	21.5736	34	23	24	2.7447	4.6772
14	6	28	15.6244	4.1174	35	24	25	-1.1136	-1.4236
15	8	28	2.3759	-1.5707	36	25	26	3.5416	2.3621
16	9	10	27.4140	-17.3322	37	25	27	-4.6608	-3.7956
17	9	11	-12.1993	-28.6800	38	27	29	6.1798	1.6493
18	10	17	4.0888	-4.9928	39	27	30	7.0791	1.6389
19	10	20	8.1297	-3.6132	40	28	27	17.9553	8.4548
20	10	21	15.2720	5.0179	41	29	30	3.7006	0.5996
21	10	22	7.2471	2.1408					

Tabela 7.55 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br.	U	θ	P_{g}	Q_{g}	Br.	U	θ	P_{q}	Q_{g}
čvora	(p . u .)	(rad)	(MW)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVAr)
1	1.0000	0.0000	87.2524	-1.2838	16	1.0242	-0.1110	0.00	0.00
2	1.0660	-0.0277	56.2736	14.2868	17	1.0211	-0.1185	0.00	0.00
3	1.0570	-0.0506	0.00000	0.00000	18	1.0116	-0.1318	0.00	0.00
4	1.0520	-0.0602	0.00000	0.00000	19	1.0097	-0.1354	0.00	0.00
5	1.0412	-0.0972	49.9832	18.9109	20	1.0143	-0.1321	0.00	0.00
6	1.0471	-0.0697	0.00000	0.00000	21	1.0161	-0.1253	0.00	0.00
7	1.0371	-0.0897	0.00000	0.00000	22	1.0167	-0.1251	0.00	0.00
8	1.0528	-0.0709	34.8940	44.3920	23	1.0147	-0.1306	0.00	0.00
9	1.0383	-0.0793	0.00000	0.00000	24	1.0093	-0.1354	0.00	0.00
10	1.0252	-0.1154	0.00000	0.00000	25	1.0208	-0.1404	0.00	0.00
11	1.0258	-0.0213	29.7227	-5.3379	26	1.0032	-0.1477	0.00	0.00
12	1.0346	-0.0984	0.00000	0.00000	27	1.0367	-0.1386	0.00	0.00
13	1.0515	-0.0610	29.0604	13.2886	28	1.0442	-0.0767	0.00	0.00
14	1.0224	-0.1159	0.00000	0.00000	29	1.0254	-0.1637	0.00	0.00
15	1.0201	-0.1199	0.00000	0.00000	30	1.0106	-0.1767	0.00	0.00

Tabela 7.56 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom populacionog PSO metoda uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	55.2402	-2.7526	22	12	13	-29.0604	-11.9957
2	1	3	32.0122	1.4688	23	12	14	7.7989	1.2359
3	2	4	21.5923	-0.2391	24	12	15	18.5073	2.2731
4	2	5	40.1309	2.7889	25	12	16	7.5800	1.8513
5	2	6	27.5844	0.8227	26	14	15	1.5277	-0.5132
6	3	4	29.2061	3.2445	27	15	18	6.1047	1.0162
7	4	6	26.8347	4.5558	28	15	23	5.5093	0.0456
8	4	12	16.0257	0.8994	29	16	17	4.0262	-0.0617
9	5	7	-4.7659	4.4841	30	18	19	2.8653	0.0358
10	6	7	27.7805	3.0135	31	19	20	-6.6398	-3.3746
11	6	8	-0.7130	-14.4750	32	21	22	-1.5680	-1.7067
12	6	9	5.1916	20.9941	33	22	24	6.1263	0.2970
13	6	10	8.5789	-1.1547	34	23	24	2.2801	0.9005
14	6	28	13.1074	0.6946	35	24	25	-0.3432	-3.3171
15	8	28	4.1596	0.8340	36	25	26	3.5443	2.3662
16	9	10	34.9143	13.0176	37	25	27	-3.9081	-5.7193
17	9	11	-29.7227	7.1406	38	27	29	6.1986	-0.3949
18	10	17	4.9972	3.1138	39	27	30	7.0674	0.8515
19	10	20	8.9312	1.4477	40	28	27	17.2244	7.5102
20	10	21	16.0254	5.0521	41	29	30	3.7197	1.4008
21	10	22	7.7394	2.0966					

U nastavku slijede rezultati nastali upotrebom programskog paketa GAMS, primjenom ugrađenog solvera CONOPT. Nakon toga je prikazan rezime svih rezulatata dobijenih kako populacionim metodama tako i solverom CONOPT.

7.1.5. Rezultati dobijeni primjenom solvera CONOPT

Prednost programskog paketa GAMS, ali i njegovog ugrađenog solvera CONOPT, u poređenju sa populacionim metodama jeste pouzdano, fiksno rješenje za posmatrane modele. Naime, za jedan model CONOPT nudi jedno rješenje koliko god puta isti bio pokretan. S druge strane, solver CONOPT rješava optimizacione probleme za jako kratko vrijeme u poređenju sa populacionim metodama, pa se kao takav može i koristiti za rješavanje optimizacionih problema u realnom vremenu.

Prvi sistem na kojem je testiran solver CONOPT predstavlja IEEE testni sistem sa devet čvorova. Upotrebom spomenutog solvera proračunato je jedinstveno rješenje funkcije cilja uvažavajući kriterijum minimalnih troškova proizvodnje. Troškovi proizvodnje, nakon optimizacije primjenom solvera CONOPT, na IEEE testni sistem sa devet čvorova iznose 5296.686 h, dok je vrijeme konvergencije svega 0.078*s*. Rezultati proračunati primjenom spomenutog solvera su prikazani u naredne dvije tabele (tabele 7.57 i 7.58). *Tabela 7.57* Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	$Q_{g}(MVAr)$	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.000	0.0000	89.7990	12.966	0.0	0.0
2	1.097	0.0854	134.321	0.0318	0.0	0.0
3	1.087	0.0567	94.1870	-22.634	0.0	0.0
4	1.094	-0.0430	0.00000	0.0000	0.0	0.0
5	1.072	-0.0695	0.00000	0.0000	125	50
6	1.084	0.0105	0.00000	0.0000	90	30
7	1.100	-0.0209	0.00000	0.0000	0.0	0.0
8	1.089	0.0158	0.00000	0.0000	100	35
9	1.100	-0.0805	0.00000	0.0000	0.0	0.0

Tabela 7.58 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	89.7990	12.966
2	4	5	54.5770	12.937
3	4	6	35.2210	-3.8900
4	5	7	-72.1110	10.151
5	6	9	-54.9590	-16.118
6	2	7	134.321	0.0320
7	7	8	61.9310	16.316
8	8	9	-38.2180	5.1000
9	3	9	94.1870	-22.634

Iz tabele 7.57 se može uočiti da solver CONOPT proračunava neznatno lošije rješenje od testiranih populacionih metoda (ABC, GSA, WDO i PSO). Razlog ovome su objasnili zasnivači algoritma CONOPT solvera na svojoj oficijalnoj stranici [49]. Naime, kompanija koja je razvila solver CONOPT je naglasila da ovaj solver proračunava bolje rješenje što je sistem veći. Drugim riječima, posmatrani solver je nastao u cilju rješavanja optimizacije složenih sistema gdje ostali solveri, koje nudi programski paket GAMS, ne mogu pronaći optimalno rješenje [49]. U nastavku slijede dvije tabele koje se odnose na proračunate parametre na sabirnicama i vodovima IEEE testnog sistema sa devet čvorova uvažavajući kriterijum minimalnih aktivnih gubitaka u mreži. *Tabela 7.59* Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 9 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_{g}\left(MW\right)$	$Q_{g}(MVAr)$	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.000	0.0000	157.652	12.095	0.0	0.0
2	1.098	-0.0513	88.0960	-2.3530	0.0	0.0
3	1.088	-0.0555	71.5670	-21.811	0.0	0.0
4	1.097	-0.0753	0.00000	0.0000	0.0	0.0
5	1.087	-0.1257	0.00000	0.0000	125	50
6	1.100	-0.0906	0.00000	0.0000	90	30
7	1.089	-0.1288	0.00000	0.0000	0.0	0.0
8	1.100	-0.0970	0.00000	0.0000	100	35
9	1.076	-0.1402	0.00000	0.0000	0.0	0.0

Tabela 7.60 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 9 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	4	157.652	12.095
2	4	5	92.2010	8.8420
3	4	6	65.4510	-8.6480
4	5	7	-33.8710	7.8700
5	6	9	-25.1540	-23.082
6	2	7	88.0960	-2.3530
7	7	8	54.0110	17.530
8	8	9	-46.2030	5.7610
9	3	9	71.5670	-21.811

S obzirom da se tabele 7.59 i 7.60 odnose na kriterijum minimalnig aktivnih gubitaka u mreži, to kriterijumska funkcija predstavlja sumu aktivnih gubitaka u mreži. Vrijednost funkcije cilja koju je proračunao programski paket koristeći ugrađeni solver CONOPT iznosi 2.3158*MW*, dok je vrijeme konvergencije 0.073*s*. U cilju veće preglednosti, rezultati proračunati primjenom posmatranog solvera na IEEE testni sistem sa četrnaest čvorova su prikazani kroz četri uzastopne tabele (dvije tabele za rezultate proračunate uvažavajući kriterijum minimalnih troškova proizvodnje, a druge dvije uvažavajući kriterijum minimalnih gubitaka u mreži).

Tabela 7.61 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	Q _g (MVAr)	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.000	0.0000	194.239	0.0000	0.00	0.00
2	1.040	-0.0698	36.7160	16.922	21.7	12.7
3	1.016	-0.1732	28.8260	24.892	94.2	19.0
4	1.015	-0.1513	0.00000	0.0000	47.8	-3.90
5	1.020	-0.1304	0.00000	0.0000	7.60	1.60
6	1.016	-0.2311	0.00000	24.000	11.2	7.50
7	1.019	-0.1988	0.00000	0.0000	0.00	0.00
8	1.059	-0.1849	8.52500	24.000	0.00	0.00
9	0.997	-0.2335	0.00000	0.0000	29.5	16.6
10	0.993	-0.2386	0.00000	0.0000	9.00	5.80
11	1.001	-0.2373	0.00000	0.0000	3.50	1.80
12	1.000	-0.2469	0.00000	0.0000	6.10	1.60
13	0.995	-0.2476	0.00000	0.0000	13.5	5.80
14	0.977	-0.2592	0.00000	0.0000	14.9	5.00

Tabela 7.62 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	$P_{ij}(MW)$	Q _{ij} (MVAr)
1	1	2	129.408	-4.535	11	6	11	5.6240	5.1890
2	1	5	64.8310	4.535	12	6	12	7.6190	2.7670
3	2	3	55.5370	-0.436	13	6	13	16.910	8.0770
4	2	4	48.8400	-1.610	14	7	8	-8.5250	-22.981
5	2	5	37.1580	-1.267	15	7	9	32.004	20.683
6	3	4	-11.1800	4.431	16	9	10	6.9600	2.5990
7	4	5	-49.9350	4.741	17	9	14	10.4800	2.5880
8	4	7	23.4790	-1.177	18	10	11	-2.0580	-3.2480
9	4	9	14.9360	3.929	19	12	13	1.4410	1.0040
10	5	6	41.3540	3.707	20	13	14	4.6190	2.8320

Tabela 7.63 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 14 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	U (p . u .)	θ (rad)	$P_g(MW)$	Q _g (MVAr)	$P_{pot}(MW)$	Q _{pot} (MVAr)
1	1.000	0.0000	1.0310	0.0000	0.00	0.00
2	1.058	0.0002	24.555	10.110	21.7	12.7
3	1.058	0.0000	95.715	19.709	94.2	19.0
4	1.050	-0.0002	0.0000	0.0000	47.8	-3.90
5	1.051	0.0003	0.0000	0.0000	7.60	1.60
6	1.032	0.0179	47.664	16.200	11.2	7.50
7	1.031	0.0745	0.0000	0.0000	0.00	0.00
8	1.060	0.2212	90.646	24.000	0.00	0.00
9	1.014	0.0198	0.0000	0.0000	29.5	16.6
10	1.009	0.0141	0.0000	0.0000	9.00	5.80
11	1.017	0.0137	0.0000	0.0000	3.50	1.80
12	1.016	0.0029	0.0000	0.0000	6.10	1.60
13	1.011	0.0025	0.0000	0.0000	13.5	5.80
14	0.994	-0.0066	0.0000	0.0000	14.9	5.00

Tabela 7.64 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 14 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	0.2680	-0.9720	11	6	11	4.8430	5.4490
2	1	5	0.7630	0.9720	12	6	12	7.5210	2.8100
3	2	3	0.1940	-2.1820	13	6	13	16.503	8.1870
4	2	4	1.6990	2.5630	14	7	8	-90.646	-10.215
5	2	5	1.2300	1.9730	15	7	9	52.015	17.915
6	3	4	1.7090	3.4280	16	9	10	7.7360	2.3310
7	4	5	-1.9730	-2.5870	17	9	14	10.967	2.4000
8	4	7	-38.631	10.751	18	10	11	-1.2840	-3.5230
9	4	9	-3.8120	6.8580	19	12	13	1.3470	1.0550
10	5	6	-7.5970	8.0240	20	13	14	4.1330	3.0210

U tabelama 7.61-7.64 su prikazani rezultati proračunati ugrađenim solverom CONOPT primijenjenim na IEEE testni sistem sa četrnaest čvorova. Uvažavajući kriterijum minimalnih troškova proizvodnje kriterijumska funkcija za IEEE sistem sa četrnaest čvorova ima vrijednost 8082.595 \$/h, dok je vrijeme potrebno solveru CONOPT 0.085s. Sa druge strane, vrijednost funkcije cilja za IEEE sistem sa četrnaest čvorova po kriterijumu minimalnih aktivnih gubitaka u mreži iznosi 0.61194*MW*, a vrijeme konvergencije 0.075s. Za razliku od IEEE testnog sistema sa devet čvorova, solver CONOPT je uspio proračunati bolje rješenje od onih koji su proračunati populacionim metodama za IEEE sistem sa četrnaest čvorova. Takođe je bitno napomenuti da je solver CONOPT pronašao najbolje rješenje za najkraće vrijeme.

Posljednji i najsloženiji sistem na kojem je testiran solver CONOPT je IEEE testni sistem sa trideset čvorova. U četri tabele koje slijede (tabele 7.65-7.68) su prikazani proračunati parametri za najbolje rješenje korišćenjem solvera CONOPT za navedeni IEEE sistem.

Tabela 7.65 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br.	U	θ	P_{g}	Q_{g}	Br.	U	θ	P_{g}	Q_{g}
čvora	(p . u .)	(rad)	(<i>MW</i>)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVAr)
1	1.000	0.0000	177.139	-16.541	16	1.047	-0.1915	0.00	0.00
2	1.088	-0.0590	48.7290	26.346	17	1.039	-0.1959	0.00	0.00
3	1.076	-0.0913	0.00000	0.0000	18	1.029	-0.2087	0.00	0.00
4	1.070	-0.1096	0.00000	0.0000	19	1.026	-0.2113	0.00	0.00
5	1.062	-0.1672	21.3180	28.567	20	1.029	-0.2076	0.00	0.00
6	1.067	-0.1278	0.00000	0.0000	21	1.030	-0.2005	0.00	0.00
7	1.058	-0.1523	0.00000	0.0000	22	1.031	-0.2002	0.00	0.00
8	1.071	-0.1335	21.217	45.473	23	1.027	-0.2047	0.00	0.00
9	1.063	-0.1622	0.00000	0.0000	24	1.018	-0.2065	0.00	0.00
10	1.043	-0.1927	0.00000	0.0000	25	1.024	-0.2053	0.00	0.00
11	1.100	-0.1410	11.9280	19.563	26	1.006	-0.2125	0.00	0.00
12	1.062	-0.1826	0.00000	0.0000	27	1.035	-0.1999	0.00	0.00
13	1.090	-0.1681	12.0000	21.974	28	1.063	-0.1357	0.00	0.00
14	1.046	-0.1978	0.00000	0.0000	29	1.016	-0.2209	0.00	0.00
15	1.040	-0.1987	0.00000	0.0000	30	1.004	-0.2359	0.00	0.00

Tabela 7.66 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	118.267	-16.610	22	12	13	-12.000	-21.235
2	1	3	58.8730	0.0690	23	12	14	7.9580	2.8110
3	2	4	34.2690	-1.0150	24	12	15	17.982	8.4330
4	2	5	63.5470	-0.0310	25	12	16	7.2210	4.6690
5	2	6	45.2320	-2.3290	26	14	15	1.6800	1.0490
6	3	4	55.1760	-1.6150	27	15	18	6.0590	2.3980
7	4	6	48.5700	-6.2670	28	15	23	5.1630	4.1200
8	4	12	32.3610	4.5670	29	16	17	3.6590	2.7390
9	5	7	-10.9460	7.5990	30	18	19	2.8170	1.4120
10	6	7	34.0990	0.1310	31	19	20	-6.6890	-2.0000
11	6	8	11.2140	-15.341	32	21	22	-1.7520	-1.2620
12	6	9	18.7750	2.1580	33	22	24	5.8620	3.3370
13	6	10	12.9770	5.0180	34	23	24	1.9230	2.4390
14	6	28	15.4850	0.8980	35	24	25	-0.9770	-1.0260
15	8	28	2.39400	1.0330	36	25	26	3.5440	2.3660
16	9	10	30.7030	20.166	37	25	27	-4.5240	-3.3980
17	9	11	-11.9280	-18.661	38	27	29	-17.833	-6.780
18	10	17	5.36800	3.1280	39	27	30	6.1870	1.6630
19	10	20	8.98100	2.9030	40	28	27	7.0880	1.6560
20	10	21	15.8620	10.183	41	29	30	3.7030	0.6040
21	10	22	7.66900	4.7110					

Tabela 7.67 Rezultati najboljeg rješenja na sabirnicama IEEE testne šeme sa 30 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br.	U	θ	P _g	Q_g	Br.	U	θ	P _g	$oldsymbol{Q}_g$
čvora	(p . u .)	(rad)	(MW)	(MVAr)	čvora	(p . u .)	(rad)	(MW)	(MVAr)
1	1.000	0.0000	51.536	-9.9200	16	1.058	-0.0798	0.00	0.00
2	1.098	-0.0140	80.000	11.982	17	1.049	-0.0892	0.00	0.00
3	1.089	-0.0366	0.0000	0.0000	18	1.040	-0.0981	0.00	0.00
4	1.086	-0.0432	0.0000	0.0000	19	1.036	-0.1025	0.00	0.00
5	1.081	-0.0794	50.000	23.694	20	1.040	-0.0999	0.00	0.00
6	1.084	-0.0517	0.0000	0.0000	21	1.041	-0.0960	0.00	0.00
7	1.075	-0.0712	0.0000	0.0000	22	1.041	-0.0958	0.00	0.00
8	1.089	-0.0527	35.000	43.827	23	1.039	-0.0954	0.00	0.00
9	1.072	-0.0564	0.0000	0.0000	24	1.030	-0.1032	0.00	0.00
10	1.053	-0.0882	0.0000	0.0000	25	1.035	-0.1115	0.00	0.00
11	1.100	-0.0035	30.000	15.395	26	1.018	-0.1185	0.00	0.00
12	1.073	-0.0659	0.0000	0.0000	27	1.048	-0.1119	0.00	0.00
13	1.096	-0.0183	40.000	18.782	28	1.080	-0.0574	0.00	0.00
14	1.058	-0.0826	0.0000	0.0000	29	1.028	-0.1324	0.00	0.00
15	1.052	-0.0853	0.0000	0.0000	30	1.017	-0.1470	0.00	0.00

Tabela 7.68 Rezultati najboljeg rješenja na vodovima IEEE testne šeme sa 30 čvorova dobijeni primjenom ugrađenog solvera CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži

Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)	Br. voda	Od čvora	Ka čvoru	P _{ij} (MW)	Q _{ij} (MVAr)
1	1	2	27.584	-8.5460	22	12	13	-40.000	-16.507
2	1	3	23.953	-1.3740	23	12	14	8.5950	2.4830
3	2	4	20.521	-0.8960	24	12	15	20.672	7.5990
4	2	5	39.465	-1.0450	25	12	16	9.8310	3.9750
5	2	6	25.773	-1.3210	26	14	15	2.3100	0.7050
6	3	4	21.338	1.4340	27	15	18	7.3950	1.9720
7	4	6	23.709	-1.7770	28	15	23	7.0970	3.2730
8	4	12	10.298	5.3410	29	16	17	6.2390	1.9810
9	5	7	-5.3460	6.0450	30	18	19	4.1380	0.9560
10	6	7	28.362	1.1480	31	19	20	-5.3720	-2.4660
11	6	8	-1.1260	-13.883	32	21	22	-1.5540	-1.5960
12	6	9	2.6140	5.9120	33	22	24	6.1870	2.7820
13	6	10	7.4800	6.0960	34	23	24	3.8420	1.5610
14	6	28	11.775	1.9680	35	24	25	1.2590	-2.4760
15	8	28	3.8550	0.9410	36	25	26	3.5430	2.3640
16	9	10	32.614	19.278	37	25	27	-2.2970	-4.8640
17	9	11	-30.000	-13.440	38	27	29	-15.595	-8.2260
18	10	17	2.8000	3.9110	39	27	30	6.1840	1.6570
19	10	20	7.6420	3.3180	40	28	27	7.0840	1.6490
20	10	21	16.057	9.8430	41	29	30	3.7020	0.6020
21	10	22							

Vrijeme izvršenja optimizacije čiji su rezultati prikazani u tabeli 7.65 iznosi 0.093*s*, a vrijednost kriterijumske funkcije 800.148\$/*h*. Sa druge strane, funkcija cilja za kriterijum minimalnih aktivnih gubitaka u mreži (tabela 1.67.) iznosi 3.13619*MW*, a vrijeme konvergencije iz tabele 7.67 0.092*s*. Na osnovu svih prikazanih rezultata u ovom poglavlju, lako se može primjetiti superiornost solvera CONOPT u cilju rješavanja problematike kojom se bavi ovaj rad. Naime, pouzdano rješenje koje nudi ugrađeni solver CONOPT, ali i njegova superiornost u pogledu vremena konvergencije nad populacionim metodama, se može iskoristiti u praktične svrhe.

U skladu sa navedenim, u sljedećem dijelu ovog poglavlja napravljena je tabela koja sadrži kako srednju vrijednost kriterijumskih funkcija dobijenih uzastopnim pokretanjem populacionih metoda, tako i rezultate funkcije cilja koje je proračunao solver CONOPT.

7.1.6. Rezultati dobijeni solverom CONOPT i populacionim metodama

Usljed velikog broja podataka koji se mogu pronaći u prethodnim cjelinama ovog poglavlja, to su isti sumirani i kao takvi prikazani u dvije tabele. Naime, u prvoj tabeli se nalaze srednje vrijednosti kriterijumskih funkcija dobijenih uzastopnim pokretanjem populacionih metoda, ali i optimalno rješenje koje je proračunao solverom CONOPT.

Tabela 7.69 Srednje vrijednosti kriterijumskih funkcija dobijenih populacionim metodama i rješenje koje je pružio solver CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje [52]

Optimizacioni	Minimalni t	Minimalni troškovi proizvodnje [\$/ <i>h</i>]						
metod / solver	IEEE 9	IEEE 14	IEEE 30					
ABC	5282.725	8094.125	802.614					
GSA	5293.429	8182.425	802.091					
WDO	5295.208	8097.412	801.484					
PSO	5293.335	8191.084	804.343					
CONOPT/GAMS	5296.686	8082.595	800.148					

Tabela 7.70 Srednje vrijednosti kriterijumskih funkcija dobijenih populacionim metodama i rješenje koje je pružio solver CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži [52]

Optimizacioni	Minima	Minimalni gubici u mreži [MW]						
metod / solver	IEEE 9	IEEE 14	IEEE 30					
ABC	2.3177	0.8047	3.2943					
GSA	2.3318	1.5113	4.3762					
WDO	2.3178	0.6141	3.5893					
PSO	2.4338	1.3696	3.8178					
CONOPT/GAMS	2.3158	0.6119	3.1362					

Posmatrajući tabele 7.69 i 7.70, jasno je da se solver CONOPT pokazao kao superioran metod nad populacionim metodama u smislu optimizacije elektroenergetskih sistema. Sa druge strane, karakteristika koja razmatrani solver čini više superiornijim jeste vrijeme konvergencije. S tim u vezi, u nastavku ove cjeline se nalaze dvije tabele, koje sadrže vrijeme konvergencije potrebno za rješavanje optimizacionog problema.

Tabela 7.71 Srednje vrijednosti vremena konvergencije populacionih metoda i vrijeme konvergencije rješenja koje je pružio solver CONOPT uvažavajući kriterijum minimalnih troškova proizvodnje [52]

Optimizacioni metod /	Vrijeme m	Vrijeme min. troškova proizvodnje [s]						
solver	IEEE 9	IEEE 14	IEEE 30					
ABC	4.474	13.00	38.647					
GSA	2.244	6.164	18.861					
WDO	1.689	6.232	18.630					
PSO	2.127	5.315	17.827					
CONOPT/GAMS	0.078	0.085	0.093					

*Tabela 7.7*2 Srednje vrijednosti vremena konvergencije populacionih metoda i vrijeme konvergencije rješenja koje je pružio solver CONOPT uvažavajući kriterijum minimalnih gubitaka u mreži [52]

Optimizacioni	Vrijeme r	Vrijeme min. gubitaka u mreži [s]						
metod / solver	IEEE 9	IEEE 14	IEEE 30					
ABC	4.575	13.234	38.056					
GSA	2.274	6.343	18.929					
WDO	2.290	6.504	19.096					
PSO	2.590	6.069	16.934					
CONOPT/GAMS	0.073	0.075	0.092					

U skladu sa navedenim tabelama (tabele 7.69-7.73), solver CONOPT se pokazao superiornijim i pouzdanijim metodom za optimizaciju elektroenergetskih sistema u odnosu na populacione ABC, GSA, WDO i PSO metode. Uvažavajući navedeno, u potpoglavljima koja slijede striktno će se upoređivati solver CONOPT sa međunarodnim radovima.

7.2. Pregled međunarodnih radova u oblasti optimizacije elektroenergetskih sistema

U ovom radu je vršena optimizacija IEEE testnih sistema sa devet, četrnaest i trideset čvorova. Ovom problematikom se bavi veliki broj istraživača, a čije tvrđenje se može potvrditi citatima koji slijede. Naime, problem optimizacije IEEE testnih sistema se može riješiti korišćenjem tradicionalnih optimizacionih metoda [53-57], ili populacionih optimizacionih metoda [58-105]. Tradicionalni optimizacioni metodi, kao što su: Njutnov metod (engl. Newton Method - NM) [53], gradientni metod (engl. Gradient Projection Method - GPM) [54], metod linearnog programiranja (engl. *Linear Programming Method - LPM*) [55], metod unutrašnje tačke (engl. Interior Point Method - IPM) [56] i bisekcijski metod (engl. Bisection Method) [57], zahtijevaju linearizaciju kriterijumske funkcije ili zanemarenje ograničenja. Jedan od nedostataka tradicionalnih metoda jeste nepouzdanost ka pronalasku globalnog optimuma. Posljednjih godina, najveću pažnju su zakupili populacioni metodi zasnovani na nasumičnoj potrazi za optimalnim rješenjem [58-105]. Neki od najčešće korišćenih metoda u smislu optimizacije elektroenergetskih sistema su: evolucijsko programiranje (engl. Evolutionary Programming - EP) [58, 59, 60], poboljšano evolucijsko programiranje (engl. Improved Evolutionary Programming - IEP) [61], meta heuristički algoritam (engl. Meta-Heuristic Algorithm - MHA) [62], genetski algoritam (engl. Genetic Algorithm - GA) [63], poboljšani genetski algoritam (engl. Improved Genetic Algorithm - IGA) [64], nadograđeni genetski algoritam (engl. Enchanced Genetic Algorithm - EGA) [65, 66], prilagodljivi genetski algoritam (engl. Adapted Genetic Algorithm -AGA) [67], tabu algoritam pretraživanja (engl. Tabu Search Algorithm - TSA) [68], simulirani algoritam žarenja (engl. Simulated Annealing Algorithm - SAA) [69], optimizacija roja čestica (engl. Particle Swarm Optimization - PSO) [70, 71, 72], hibridna optimizacija roja čestica (engl. Hybrid Particle Swarm

Optimization - HPSO) [73, 74], poboljšana optimizacija roja čestica (engl. Improved Particle Swarm Optimization - IPSO) [75], modifikovana optimizacija roja čestica (engl. Modified Particle Swarm Optimization - MPSO) [76], algoritam diferencijalne evolucije (engl. Differential Evolution Algorithm - DEA) [77, 78, 79], modifikovani algoritam diferencijalne evolucije (engl. Modified Differential Evolution Algorithm - MDEA) [80], diferencijalni algoritam pretraživanja (engl. Differential Search Algorithm - DSA) [81], gravitacioni algoritam pretraživanja (engl. Gravitational Search Algorithm - GSA) [74, 82, 83, 84], nadograđeni gravitacioni algoritam pretraživanja (engl. Enhanced Gravitational Search Algorithm - EGSA) [85], modifikovani algoritam preskakanja žaba (engl. Modified Shuffle Frog Leaping Algorithm - MSFLA) [86], harmonijski algoritam pretraživanja (engl. Harmony Search Algorithm -[87]. haotični samoodrživi diferencijalno harmonijski algoritam HSA) pretraživanja (engl. Chaotic Self-Adaptive Differential Harmony Search Algorithm - CSADHSA) [88], optimizacioni algoritam zasnovan na biogeografiji (engl. Biogeography Based Optimization Algorithm - BBOA) [89], algoritam vještačke kolonije pčela (engl. Artificial Bee Colony Algorithm - ABCA) [90], više fazni optimizacioni algoritam pretraživanja (engl. Multi Phase Search Optimization Algorithm - MPSOA) [76], hibridni optimizacioni algoritam pretraživanja (engl. Hybrid Search Optimization Algorithm - HSOA) [76], poboljšani optimizacioni algoritam sudaranja tijela (engl. Improved Colliding Bodies Optimization Algorithm - ICBOA) [91], optimizacioni algoritam crne rupe (engl. Black Hole Optimization Algorithm - BHOA) [92], optimajzer sivog vuka (engl. Grey Wolf Optimizer - GWO) [93], algoritam sinusa i kosinusa (engl. Sine-Cosine Algorithm - SCA) [94], algoritam lige šampiona (engl. League Championship Algorithm - LCA) [95], algoritam nastavnog učenja (engl. Teaching-Learning Algorithm - TLA) [96], algoritam pretraživanja unazad (engl. Back Tracking Search Algorithm - BTSA) [97], algoritam imperialističke konkurencije (engl. Imperialist Competitive Algorithm - ICA) [98], optimizacioni algoritam prilagođenja grupnog pretraživanja (engl. Adaptive Group Search Optimization Algorithm - AGSOA) [99], algoritam hranjenja bakterija (engl. Bacteria Foraging Algorithm - BFA) [100], optimizacija roja svitaca (engl. Glowworm Swarm Optimization) [101], optimizaciona tehnika prilagođenja predator-plijen zasnovana na biogeografiji (engl. Adaptive Biogeography Based Predator-Pray Optimization Technique - ABBPPOT) [102], jaja algoritam (engl. Jaya Algorithm - JA) [103], modifikovano ćuko pretraživanje (engl. Modified Cuckoo Search - MCS) [104] i grupisano prilagodijiv algoritam nastavnog učenja (engl. Clustered Adaptive Teaching-Learning Algorithm - CATLA) [105].

Uvažavajući navedenu literaturu, u nastavku ovog poglavlja slijede dvije cijeline zasebno za kriterijume korišćene u ovom radu (kriterijum minimalnih troškova proizvodnje i kriterijum minimalnih aktivnih gubitaka u mreži), a koje se odnose na rješenja koja su predložena u većini prethodno navedenih međunarodnih radova.

7.2.1. Poređenje rješenja optimizacije po kriterijumu minimalnih troškova proizvodnje dobijena solverom CONOPT i predloženim rješenjima iz međunarodnih radova

lako je polje optimizacije elektroenergetskih sistema interesantno mnogim istraživačima dugi niz godina, njihova analiza je potrebna i u današnje vrijeme zbog naglog razvoja savremenih elektroenergetskih sistema, ali i potrebe za priključenje velikog broja elektrana koje proizvode električnu energiju iz obnovljivih izvora. Uvažavajući navedeno, veliki broj međunarodnih radova se bavio ovom problematikom posljednjih godina (tabela 7.73).

Tabela 7.73 Pregled rezultata iz međunarodnih radova dobijenih upotrebom različitim optimizacionim metodama na IEEE sistemu sa trideset čvorova uvažavajući kriterijum minimalnih troškova proizvodnje

Re. br.	Literatura	Metod	$F_{cost}[\$/h]$	Vr. [s]	Re. br.	Literatura	Metod	$F_{cost}[\$/h]$	Vr.[s]
1	Surender 2018 [57]	BM	799.445	-	21	Sivasubramani 2011 [87]	HSA	798.8	-
2	Somasundar am 2004 [59]	EP	802.400	-	22	Arul 2013 [88]	CSADHSA	801.5888	129.6
3	Bakirtzis 2002 [65]	EGA	802.060	-	23	Bhattacharya 2011 [89]	BBO	799.1116	11.02
4	Kunari 2010 [66]	EGA	799.560	-	24	Adaryani 2013 [90]	ABC	800.66	-
5	Attia 2012 [67]	AGA	799.844	-			MPSOA	798.198	26.45
6	Abido 2002 [68]	TSA	802.290	-		FI-Sehiemv	MPSO	799.93	46.87
7	Roa- Sepulveda 2003 [69]	SA	799.450	-	25	2014 [76]	HSOA	810.68	-
8	Abido 2002 [70]	PSO	800.410	-			HPSOA	812.48	-
9	Hazra 2010 [71]	PSO	-	-	26	Bouchekara 2014 [91]	BHBO	799.9217	-
10	Kim 2011	PSO	800.680	8.03	27	Bouchekara 2015 [92]	ICBO	799.053	-
10	[72]	Parallel PSO	800.640	1.73	28	EI-Fergany 2015 [93]	DE	801.23	16.2
	Liang 2011	PSO	-	-			GWO	801.41	15.8
11	[73]	PSO - LRS	-	-	29	Attia 2018 [94]	SCA	800.102	-
12	Radosavljevi c 2015 [74]	PSOG SA	799.705	-	23		MSCA	799.31	-
13	Niknam 2012 [75]	IPSO	801.978	-	30	Bouchekara 2014 [96]	TLA	799.0715	-
14	Ela 2010 [78]	DE	799.289	-	31	Chaib 2016 [97]	BSO	799.0706	-
15	El-Sehiemy 2016 [79]	FIDEA	799.083	-	32	Daryani 2015 [99]	AGSOA	801.75	-
16	Sayah 2008 [80]	MDE	802.376	23.07	33	Reddy 2016	GSO	799.05	4.904
17	Bouchekara 2014 [81]	DSA	799.094	-	33	[101]	PSO	800.05	7.98
18	Duman 2012 [82]	GSA	798.675	-	34	Christy 2014 [102]	ABBPPO	799.0566	-
19	Bhowmik 2015 [84]	NSMO OGSA	796.124	-	35	Warid 2016 [103]	Jaya	800.4794	35.48
20	Niknam 2011 [86]	MSLFA	802.287	-	36	Reddy 2017 [105]	CATLBO	799.0522	3.054

U cilju upotrebe optimizacionog metoda za rješavanje problema u realnom vremenu, potrebno je da isti omogućava stabilnu vrijednost i da mu je vrijeme konvergencije što je manje moguće. Naime, bitno je napomenuti da su sva rješenja koja su predložena u međunarodnim radovima dobijena primjenom populacionih metoda, to ona nemaju veliku primjenu u rješavanju problema u realnom vremenu. S druge strane, vrijeme potrebno za postizanje optimalnih rješenja u analiziranim radovima je prilično veće od vremena konvergencije primjenom solvera CONOPT. Osim boljeg vremena konvergencije, bitno je navesti da solver CONOPT daje stabilno rješenje, dok se ovakva činjenica ne može smatrati i za populacione metode.

Iz priložene tabele 7.73 se vidi da neki radovi nijesu prikazali vrijeme konvergencije. Samim tim, o njihovom vremenu konvergencije nije moguće komentarisati. U nastavku slijedi poređenje rješenja iz tabele 7.73 sa rješenjima proračunatim solverom CONOPT uvažavajući kriterijum minimalnih aktivnih gubitaka u mreži.

7.2.2. Poređenje rješenja optimizacije po kriterijumu minimalnih gubitaka u mreži dobijena solverom CONOPT i predloženim rješenjima iz međunarodnih radova

Jedan od kriterijuma koji je uzet u obzir prilikom izrade ovog rada predstavlja najčešće korišćeni kriterijum kada je riječ o optimizaciji elektroenergetskih sistema. Riječ je o kriterijumu minimalnih aktivnih gubitaka u mreži. Radovi koji su analizirani u prethodnoj cjelini ovog poglavlja su korišćeni za poređenje predloženih rješenja sa onim koje je proračunao ugrađeni solver CONOPT. Vrijeme konvergencije i rezultati kriterijumske funkcije uvažavajući kriterijum minimalnih aktivnih gubitaka u mreži, predloženih u analiziranim međunarodnim radovima, su prikazani u tabeli 7.74.

Tabela 7.74 Pregled rezultata iz međunarodnih radova dobijenih upotrebom različitim optimizacionim metodama na IEEE sistemu sa trideset čvorova uvažavajući kriterijum minimalnih gubitaka u mreži

Re. br.	Literatura	Metod	F _{cost} [MW]	Vr. [s]	Re. br.	Literatura	Metod	F _{cost} [MW]	Vr. [s]
1	Surender 2018 [57]	BM	3.0554	-	21	Sivasubrama ni 2011 [87]	HSA	2.9678	-
2	Somasundar am 2004 [59]	EP	-	-	22	Arul 2013 [88]	CSADHSA	-	-
3	Bakirtzis 2002 [65]	EGA	-	-	23	Bhattachary a 2011 [89]	BBO	-	-
4	Kunari 2010 [66]	EGA	3.2008	-	24	Adaryani 2013 [90]	ABC	3.1078	-
5	Attia 2012 [67]	AGA	-	-			MPSOA	-	-
6	Abido 2002 [68]	TSA	-	-		FI-Sehiemv	MPSO	-	-
7	Roa- Sepulveda 2003 [69]	SA	-	-	25	2014 [76]	HSOA	-	-
8	Abido 2002 [70]	PSO	-	-			HPSOA	-	-
9	Hazra 2010 [71]	PSO	-	-	26	Bouchekara 2014 [91]	BHBO	-	-
10	Kim 2011	PSO	-	-	27	Bouchekara 2015 [92]	ICBO	-	-
10	[72]	Parallel PSO	-	-	28	El-Fergany 2015 [93]	DE	3.38	16.7
	Liang 2011	PSO	3.48	218			GWO	3.41	16.1
11	[73]	PSO - LRS	3.41	128	20	Attia 2018	SCA	2.9425	-
12	Radosavljevi c 2015 [74]	PSOG SA	-	-	ZJ	[94]	MSCA	2.9334	-
13	Niknam 2012 [75]	IPSO	5.0732	-	30	Bouchekara 2014 [96]	TLA	-	-
14	Ela 2010 [78]	DE	-	-	31	Chaib 2016 [97]	BSO	-	-
15	El-Sehiemy 2016 [79]	FIDEA	2.8535	-	32	Daryani 2015 [99]	AGSOA	-	-
16	Sayah 2008 [80]	MDE	-	-	22	Reddy 2016	GSO	-	-
17	Bouchekara 2014 [81]	DSA	-	-	55	[101]	PSO	-	-
18	Duman 2012 [82]	GSA	-	-	34	Christy 2014 [102]	ABBPPO	2.867	-
19	Bhowmik 2015 [84]	NSMO OGSA	1.495	-	35	Warid 2016 [103]	Jaya	3.1035	-
20	Niknam 2011 [86]	MSLFA	-	-	36	Reddy 2017 [105]	CATLBO	3.0554	3.15

Vrijeme konvergencije koje su prikazali autori u svojim radovima je izraženo u sekundama, dok je solver CONOPT pronašao optimalno rješenje za svega nekoliko desetina milisekunde (tabela 7.72).

Jedna od jako bitnih stvari koju je važno napomenuti jeste nedosljednost rezultata koji su prikazani u nekim od navedenih časopisa. Naime, u nekim radovima su prekršena ograničenja za koja su proračunata optimalna rješenja kod IEEE testnog sistema sa trideset čvorova. Radovi [90, 103] su sproveli diskusiju na ovu temu, dok je detaljna analiza prikazana u radu [90].

7.3. Uticaj distribuiranih generatora na IEEE testni sistem sa trideset čvorova uvažavajući kriterijum minimalnih troškova proizvodnje

Otimizacija elektroenergetskog sistema sa prisustvom distibuiranih generatora (energija proizvedena iz obnovljivih izvora energije) je malo istražena oblast iz razloga njegove kompleksnosti. Međutim, analiza uticaja priključenja distribuiranih generatora u IEEE testni sistem je prikazana u radu [103] koji je u tom smislu primijenio Jaya algoritam. Upravo navedeni rad je iskorišćen za poređenje sa rezultatima proračunatim primjenom solvera CONOPT.

U ovom slučaju distribuirani generatori se sastoje od niza vjetro generatora koji čine jedan vjetro park. Ovakav način korišćena distribuiranih generatora može imati veliki uticaj u smislu poboljšanja naponskih prilika u posmatranom sistemu, kao i umanjenje potrebe za korišćenjem električne energije proizvedene iz konvencijalnih elektrana.

IEEE testni sistem sa trideset čvorova je modifikovan u cilju implementacije distribuiranih generatora u standardni IEEE sistem. U tom smislu, razmatrana su dva slučaja: stanje sistema prije i poslije priključenja distribuiranih generatora. Rad [103] je priključivao distribuirane generatore u čvorovima 3 i 30. Važno je napomenuti da aktivna snaga distribuiranih generatora ne prelazi snagu od 10MW, dok je faktor snage 0.8.

U skladu sa navedenim, u tabeli 7.75 su prikazani proračunati parametri sistema koje je predložio rad [103], ali i oni koje je proračunao solver CONOPT prije i poslije priključenja distribuiranih generatora u IEEE testni sistem sa trideset čvorova.

Tabela 7.75 Poređenje rezultata prikazanih u radu [103] sa rezultatima dobijenim solverom CONOPT prije i poslije priključenja distribuiranih generatora u 3. i 30. čvoru IEEE testnog sistema sa trideset čvorova

Varijablo	IEEE 3 distribuira	0 bez anih gen.	IEEE distribuirai 3. čv	30 sa nim gen. u voru	IEEE 30 sa distribuiranim gen. u 30. čvoru		
varijable	Jaya algoritam [103]	GAMS/ CONOPT	Jaya algoritam [103]	GAMS/ CONOPT	Jaya algoritam [103]	GAMS/ CONOPT	
$P_{g1}[MW]$	177.744	177.139	169.467	172.488	169.723	172.536	
$P_{g2}[MW]$	48.1929	48.729	47.9308	47.656	47.6386	47.608	
$P_{g5}[MW]$	21.4679	21.318	21.1194	20.996	20.8386	20.967	
$P_{g8}[MW]$	21.1103	21.217	20.8342	18.818	20.6944	18.363	
$P_{g11}[MW]$	11.782	11.928	11.8917	11.1	11.8375	11.064	
$P_{g13}[MW]$	12.1669	12	12.0307	12	12.0173	12	
<i>U</i> _{g2} [<i>p</i> . <i>u</i> .]	1.06653	1.088	1.05308	1.089	1.05512	1.088	
<i>U</i> _{g5} [<i>p</i> . <i>u</i> .]	1.0335	1.062	1.02076	1.063	1.01985	1.062	
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.03722	1.071	1.02941	1.072	1.03177	1.071	
<i>U</i> _{g11} [<i>p</i> . <i>u</i> .]	1.09983	1.1	1.07827	1.1	1.07907	1.1	
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.05041	1.09	1.04283	1.088	1.04054	1.093	
F _{troš} [\$/h]	800.479	800.148	769.963	768.329	768.039	766.473	
$P_{DG}[MW]$	0	0	9.1169	9.1169	9.1478	9.1478	
$Q_{DG}[MVAr]$	0	0	5.6501	5.6501	5.6692	5.6692	
$F_{gub} [MW]$	9.06481	8.932	8.9912	8.782	8.4983	8.294	

Iz tabele (tabela 7.75) se može zapaziti da su troškovi prizvodnje iz konvencijalnih elektrana značajno manji kada se priključe distribuirani generatori. Sa druge strane, solver CONOPT je pronašao optimalnije rješenje od onog koji je predložen u radu [103]. Takođe, vrijeme konvergencije primjenom CONOPT-a je drastično manje od vremena potrebnog Jaya algoritmu za proračun optimalnog rješenja (tabela 7.73).

Zbog velikog značaja prisustva distribuiranih generatora u elektroenergetskim sistemima, ovo poglavlje je podijeljeno u dvije cjeline. Prva cjelina se odnosi na uticaj povećanja proizvodnje aktivne snage iz distribuiranih izvora kako na troškove proizvodnje električne energije iz konvencijalnih elektrana, tako i na gubitke aktivne snage u sistemu. Sa druge strane, drugi dio ove cjeline će se odnositi na odabir optimalne lokacije za priključenje distribuiranih generatora uvažavajući kriterijum minimalnih gubitaka u mreži.

7.3.1. Uticaj povećanja proizvodnje aktivne snage iz distribuiranih izvora na troškove proizvodnje električne energije iz konvencijalnih elektrana i gubitke aktivne snage u sistemu

Uvažavajući značaj prisustva distribuiranih generatora u elektroenergetskim sistemima, u ovom dijelu rada je prikazan uticaj povećanja proizvodnje aktivne snage iz distribuiranih izvora na troškove proizvodnje

električne energije, ali i na gubitke aktivne snage u sistemu. Naime, testiran je solver CONOPT na modifikovanu IEEE testnu šemu sa trideset čvorova usljed prisustva distribuiranih generatora u čvoru 30. Prilikom optimizacije IEEE sistema smatrana je konstantna proizvodnja aktivne snage iz distribuiranih generatora, bez mogućnosti proizvodnje reaktivne snage. Posmatrana su tri slučaja u kojima distribuirani generatori proizvode aktivnu snagu vrijednosti 5MW, 10MW i 15MW, respektivno. Optimizacija je vršena uvažavajući oba kriterijuma kojima se bavi ovaj magistarski rad.

U nastavku slijede tabele koje prikazuju uticaj povećanja proizvodnje aktivne snage distribuiranih generatora lociranih u čvoru 30 na proizvodnju električne energije konvencijalnih elektrana.

Tabela 7.76 Optimalno rješenje proračunatih parametara postignutih primjenom solvera CONOPT sa i bez prisustva distribuiranih generatora na modifikovanu IEEE šemu sa trideset čvorova uvažavajaući kriterijum minimalnih troškova proizvodnje

Varijable	IEEE 30 bez distrib.	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> =	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> =	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> =
	gen.	5 <i>MW</i>)	10 <i>MW</i>)	15 <i>MW</i>)
$P_{g1}[MW]$	177.1395	174.5928	172.0987	169.6535
$P_{g2}[MW]$	48.7287	48.1093	47.5056	46.9164
$P_{g5}[MW]$	21.3184	21.1251	20.9366	20.7526
<i>P</i> _{g8} [<i>MW</i>]	21.2166	19.6454	18.1222	16.6427
$P_{g11}[MW]$	11.9279	11.4551	10.9951	10.5468
$P_{g13}[MW]$	12.0000	12.0000	12.0000	12.0000
$U_{g2}[p.u.]$	1.0883	1.0881	1.0881	1.0882
<i>U</i> _{g5} [<i>p</i> . <i>u</i> .]	1.0625	1.0621	1.0621	1.0624
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.0714	1.0711	1.0713	1.0719
<i>U</i> _{g11} [<i>p</i> . <i>u</i> .]	1.1000	1.1000	1.1000	1.1000
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.0898	1.0884	1.0877	1.0875
F _{troš} [\$/ h]	800.1484	781.5198	763.4702	745.9541
$P_{DG}[MW]$	0.0000	5.0000	10.0000	15.0000
$Q_{DG}[MVAr]$	0.0000	0.0000	0.0000	0.0000
F_{gub} [MW]	8.93206	8.52829	8.25913	8.11374
Vrijeme [s]	0.093	0.097	0.097	0.097

Tabela 7.77 Optimalno rješenje proračunatih parametara postignutih primjenom solvera CONOPT sa i bez prisustva distribuiranih generatora na modifikovanu IEEE šemu sa trideset čvorova uvažavajaući kriterijum minimalnih aktivnih gubitaka u mreži

Varijable	IEEE 30 bez distrib. gen.	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> = 5 <i>MW</i>)	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> = 10 <i>MW</i>)	IEEE 30 sa distrib. gen. u 30. čvoru (<i>P</i> = 15 <i>MW</i>)
$P_{g1}[MW]$	51.5362	50.0000	50.0000	50.0000
$P_{g2}[MW]$	80.0000	76.1796	70.9704	65.8851
$P_{g5}[MW]$	50.0000	50.0000	50.0000	50.0000
$P_{g8}[MW]$	35.0000	35.0000	35.0000	35.0000
$P_{g11}[MW]$	30.0000	30.0000	30.0000	30.0000
$P_{g13}[MW]$	40.0000	40.0000	40.0000	40.0000
<i>U</i> _{g2} [<i>p</i> . <i>u</i> .]	1.0981	1.0977	1.0973	1.0970
<i>U</i> _{g5} [<i>p</i> . <i>u</i> .]	1.0808	1.0804	1.0802	1.0803
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.0890	1.0891	1.0895	1.0902
<i>U</i> _{g11} [<i>p</i> . <i>u</i> .]	1.1000	1.1000	1.1000	1.1000
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.0963	1.0949	1.0941	1.0939
F _{troš} [\$/h]	967.5670	946.7901	924.2598	903.1814
$P_{DG}[MW]$	0.0000	5.0000	10.0000	15.0000
$Q_{DG}[MVAr]$	0.0000	0.0000	0.0000	0.0000
$F_{gub} [MW]$	3.13619	2.77959	2.57043	2.48515
Vrijeme [s]	0.092	0.094	0.094	0.094

Može se primijetiti da priključenje distribuiranog generatora sa većom aktivnom snagom doprinosi smanjenju troškova proizvodnje konvencijalnih elektrana (tabela 7.76), ali i smanjenju aktivnih gubitaka u mreži (tabela 7.77). Sa druge strane, rezultati iz tabele 7.76, odnosno iz tabele 7.77, pokazuju da se pojavljuje veliko odstupanje u proizvodnji aktivne snage iz konvencijalnih elektrana kad se posmatraju različiti kriterijumi. Drugim riječima, ako je posmatran kriterijum minimizalnih troškova proizvodnje onda su aktivni gubici u mreži veći od onih kada je primjenjen kriterijum minimalnih aktivnih gubitaka u mreži.

7.3.2. Odabir optimalne lokacije za priključenje distribuiranih generatora uvažavajući kriterijum minimalnih aktivnih gubitaka u mrežu

U ovoj cjelini je posmatran modifikovani IEEE testni sistem sa trideset čvorova. Izvršena modifikacija na standardni IEEE sistem je postignuta u smislu priključenja distribuiranih generatora u svakom čvoru, izuzev generatorskih čvorova, bez ograničenja u njihovoj proizvodnji aktivne snage, dok se podrazumijeva da distribuirani generatori ne proizvode reaktivnu snagu. Ovakav pristup analize postojećih sistema može imati veliku praktičnu primjenu. U skladu sa navedenim, u tabelama 7.78-7.80 su prikazani rezultati koji su proračunati korišćenjem solvera CONOPT u smislu pronalaska najoptimalnijeg mjesta priključenja distribuiranih generatora u cilju minimizacije aktivniih gubitaka u mreži.

Tabela 7.78 Optimalni rezultati priključenja distribuiranih generatora u sabirnicama 3, 4, 6, 7, 9, 10, 12 i 14 uvažavajući kriterijum minimalnih gubitaka u mreži

Varijable	Čvor 3	Čvor 4	Čvor 6	Čvor 7	Čvor 9	Čvor 10	Čvor 12	Čvor 14
$P_{g1}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g2}[MW]$	53.208	31.611	20.720	25.379	26.573	34.544	67.128	70.013
$P_{g5}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g8}[MW]$	35.000	35.000	34.291	35.000	35.000	35.000	35.000	35.000
$P_{g11}[MW]$	30.000	30.000	29.811	30.000	10.000	30.000	30.000	30.000
$P_{g13}[MW]$	40.000	14.552	16.845	32.097	36.731	40.000	12.000	40.000
<i>U</i> _{g2} [<i>p</i> . <i>u</i> .]	1.0962	1.0954	1.0953	1.0956	1.0954	1.0958	1.0976	1.0977
<i>U</i> _{g5} [<i>p</i> . <i>u</i> .]	1.0801	1.0804	1.0822	1.0869	1.0815	1.0815	1.0811	1.0809
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.0905	1.0929	1.0979	1.0940	1.0962	1.0950	1.0907	1.0903
$U_{g11}[p.u.]$	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.0984	1.0952	1.0910	1.0933	1.0904	1.0922	1.1000	1.0991
F _{troš} [\$/ h]	854.577	673.673	649.755	729.650	674.702	793.253	787.851	920.224
$P_{DG}[MW]$	28.1488	74.8353	83.9997	62.9983	77.5184	46.3787	42.3319	11.3691
$F_{gub}[MW]$	2.95718	2.59825	2.26608	2.07482	2.42317	2.52302	3.06025	2.98253

Tabela 7.79 Optimalni rezultati priključenja distribuiranih generatora u sabirnicama 15-22 uvažavajući kriterijum minimalnih gubitaka u mreži

Varijable	Čvor 15	Čvor 16	Čvor 17	Čvor 18	Čvor 19	Čvor 20	Čvor 21	Čvor 22
$P_{g1}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g2}[MW]$	60.537	64.100	50.823	58.744	56.231	55.897	42.674	44.296
$P_{g5}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g8}[MW]$	35.000	35.000	35.000	35.000	35.000	35.000	35.000	35.000
$P_{g11}[MW]$	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
$P_{g13} \left[MW \right]$	29.382	40.000	40.000	40.000	40.000	40.000	40.000	40.000
<i>U</i> _{g2} [<i>p</i> . <i>u</i> .]	1.0970	1.0974	1.0966	1.0969	1.0967	1.0967	1.0961	1.0962
$U_{g5}[p.u.]$	1.0807	1.0811	1.0811	1.0807	1.0807	1.0808	1.0810	1.0810
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.0910	1.0911	1.0927	1.0912	1.0915	1.0917	1.0936	1.0934
$U_{g11}[p.u.]$	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.0960	1.0990	1.0953	1.0958	1.0939	1.0939	1.0922	1.0926
$F_{troš}[\$/h]$	831.720	895.998	846.059	875.111	865.656	864.415	818.467	823.774
$P_{DG}[MW]$	31.1626	17.2314	30.2649	22.2976	24.7180	25.0988	38.1599	36.5738
$F_{gub}[MW]$	2.68197	2.93172	2.68771	2.64197	2.54915	2.59575	2.43416	2.47013

Varijable	Čvor 23	Čvor 24	Čvor 25	Čvor 26	Čvor 27	Čvor 28	Čvor 29	Čvor 30
$P_{g1}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g2}[MW]$	60.118	52.680	60.773	72.373	52.459	37.946	66.399	64.738
$P_{g5}[MW]$	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000
$P_{g8}[MW]$	35.000	35.000	35.000	35.000	35.000	35.000	35.000	35.000
$P_{g11}[MW]$	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
$P_{g13}[MW]$	40.000	40.000	40.000	40.000	40.000	31.375	40.000	40.000
<i>U</i> _{g2} [<i>p</i> . <i>u</i> .]	1.0970	1.0965	1.0970	1.0977	1.0967	1.0960	1.0972	1.0970
<i>U</i> _{g5} [<i>p</i> . <i>u</i> .]	1.0807	1.0807	1.0809	1.0808	1.0812	1.0815	1.0807	1.0803
<i>U</i> _{g8} [<i>p</i> . <i>u</i> .]	1.0911	1.0920	1.0916	1.0901	1.0933	1.0961	1.0907	1.0905
$U_{g11}[p.u.]$	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
<i>U</i> _{g13} [<i>p</i> . <i>u</i> .]	1.0969	1.0940	1.0948	1.0952	1.0946	1.0938	1.0948	1.0939
F _{troš} [\$/ h]	880.373	852.674	882.902	930.233	851.879	762.255	905.271	898.551
$P_{DG}[MW]$	20.9656	28.1663	20.2884	8.8700	28.5466	51.5272	14.6685	16.1442
$F_{gub} [MW]$	2.68378	2.44649	2.66101	2.84300	2.60546	2.44774	2.66760	2.48216

Tabela 7.80 Optimalni rezultati priključenja distribuiranih generatora u sabirnicama 23-30 uvažavajući kriterijum minimalnih gubitaka u mreži

U cilju lakšeg uočavanja promjene troškovima proizvodnje konvencijalnih elektrana, ali i aktivnih gubitaka u mreži, to su vrijednosti funkcija cilja za oba kriterijuma prikazane u tabeli 7.81.

Tabela 7.81 Optimalni rezultati priključenja distribuiranih generatora u svim sabirnicama sem u generatorskim čvorovima uvažavajući kriterijum minimalnih gubitaka u mreži

Br. čvora	F _{troš} [\$/ h]	F _{gub} [MW]	Br. čvora	F _{troš} [\$/ h]	F _{gub} [MW]
3	854.5770	2.95718	19	865.6560	2.54915
4	673.6733	2.59825	20	864.4154	2.59575
6	649.7554	2.26608	21	818.4666	2.43416
7	729.6504	2.07482	22	823.7741	2.47013
9	674.7024	2.42317	23	880.3726	2.68378
10	793.2529	2.52302	24	852.6740	2.44649
12	787.8510	3.06025	25	882.9025	2.66101
14	920.2241	2.98253	26	930.2327	2.84300
15	831.7200	2.68197	27	851.8792	2.60546
16	895.9979	2.93172	28	762.2548	2.44774
17	846.0591	2.68771	29	905.2707	2.66760
18	875.1109	2.64197	30	898.5513	2.48216

Iz priloženih rezultata (tabela 7.81) jasno je da su najmanji aktivni gubici u mreži kada su distribuirani generatori priključeni na sabirnicu 7, i kada proizvode 62.9983*MW* aktivne snage (tabela 7.78). Sa druge strane, posmatrajući tabelu 7.81 može se zaključiti da je potrebno izbjegavati priključenje distribuiranih generatora u čvoru 26, zbog najvećih troškova proizvodnje električne energije iz konvencijalnih elektrana, ali i zbog prilično visokih gubitaka aktivne snage u posmatranom sistemu.

Takođe je moguće iskoristiti dobijene rezultate, pri odabiru mjesta priključka u zavisnosti od raspoloživog kapaciteta distribuiranih generatora. Upravo ovakav pristup rješavanja problema odabira najbolje lokacije se može iskoristiti i u praktične svrhe, čime ovaj rad dodatno dobija na značaju.

ZAKLJUČAK

Jedan od glavnih pokazatelja kvaliteta rada elektroenergetskih sistema predstavljaju aktivni gubici u mreži (izraženi u procentima) i troškovi proizvodnje električne energije iz konvencijalnih elektrana. Zato je veoma važno postići minimizaciju pomenutih gubitaka i troškova, kroz proces optimizacije rada elektroenergetskih sistema. Veliki broj istraživača je izučavao optimizacione metode kako bi se pronašlo najbolje rješenje za eksploataciju elektroenergetskih sistema.

U tom smislu, u ovom radu je vršena optimizacija IEEE testnih sistema uvažavajući kriterijume minimalnih aktivnih gubitaka u mreži i minimalnih troškova proizvodnje električne energije iz konvencijalnih elektrana. Naime, korišćena su četri populaciona metoda (ABC, GSA, WDO i PSO) realizovana u programskom paketu MATLAB. Pored navedenih populacionih metoda, kreiran je model unutar programskog paketa GAMS, za čije rješavanje je korišćen solver CONOPT. Analizom modela realizovanog u GAMS-u moguće je uočiti veliku preciznost i brzinu konvergencije koju nudi solver CONOPT. Takođe, u cilju bolje preglednosti, realizovana je GUI aplikacija u programskom paketu MATLAB, u kojoj je moguće primjeniti jedan od četri populaciona metoda na jednu od tri IEEE testne mreže (IEEE sa devet, četrnaest i trideset sabirnica).

Poglavlja su tako koncipirana, da poslije uvodnog dijela slijedi analiza IEEE testnih sistema i implementacija optimizacionih metoda na njima. Zatim je vršeno poređenje između rješenja proračunatih populacionim metodama i solverom CONOPT. Bitno je napomenuti da su pobrojani mnogi radovi koji se tiču ove problematike, koji ujedno i predstavljaju dobar pokazitelj važnosti iste. Pored navedenog, optimizacija u energetici je zadobila veću pažnju nakon potrebe za priključenjem obnovljivih izvora energije. S tim u vezi, u ovom radu su izvršene modifikacije postojećih IEEE testnih sistema u smislu priključenja obnovljivih izvora energije, što oblast optimizacije elektroenergetskih sistema čini dodatno kompleksnom.

Korišćeni metodi i realizovani modeli se mogu iskoristiti i u realnom vremenu. Naime, moguće je izvršiti optimizaciju crnogorskog elektroenergetskog sistema u cilju smanjenja aktinih gubitaka u mreži, ali i smanjenja troškova proizvodnje iz konvencijalnih elektrana. U tom smislu, moguće je koristiti programski paket GAMS i njegov solver CONOPT, zbog njegove brzine konvergencije i pouzdanog rješenja.

Literatura

- [1] B. Zohuri, Hybrid Energy System Driving Reliable Renewable Sources of Energy Storage, 1 ed., Springer International Publishing, 2018, pp. XVIII, 287.
- [2] S. Misak and L. Prokop, Operation Characteristics of Renewable Energy Sources, 1 ed., Springer International Publishing, 2017, pp. XV, 235.
- [3] M. R. Islam, N. K. Roy and S. Rahman, Renewable Energy and the Environment, 1 ed., Springer Singapore, 2018, pp. XXXI, 231.
- [4] J. F. Manwell, J. G. McGowan and A. L. Rogers, Wind Energy Explained: Theory, Design and Application, 2 ed., Wiley, 2010, p. 704.
- [5] Y. Zhao, L. Ye, W. Wang, H. Sun, Y. Ju and Y. Tang, "Data-Driven Correction Approach to Refine Power Curve of Wind Farm Under Wind Curtailment," *IEEE Transactions on Sustainable Energy*, vol. 9, no. 1, pp. 95 - 105, 2017.
- [6] J. Fricke and W. L. Borst, Essentials of Energy Technology: Sources, Transport, Storage, Conservation, 1 ed., Wiley, 2014, p. 462.
- [7] I. Yahyaoui, Advances in Renewable Energies and Power Technologies: Volume 1: Solar and Wind Energies, 1 ed., Elsevier Science, 2018, p. 530.
- [8] A. R. Al-Roomi, "Power Flow Test Systems Repository," Dalhousie University, Electrical and Computer Engineering, 2015. [Online]. Available: https://al-roomi.org/powerflow/9-bus-system.
- [9] P. W. Sauer, M. A. Pai and J. H. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox, 2 ed., Wiley, 2017, p. 374.
- [10] "Power System Test Case Archive," University of Washington, Electrical Engineering, [Online]. Available: https://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm.
- [11] "Power System Test Case Archive," University of Washington, Electrical Engineering,[Online]. Available: https://labs.ece.uw.edu/pstca/pf14/pg_tca14fig.htm.
- [12] S. Kabir, O. Krause, R. Bansal and J. Ravishanker, "Dynamic voltage stability analysis of sub-transmission networks with large-scale photovoltaic systems," in *IEEE PES General Meeting - Conference & Exposition*, National Harbor, MD, USA, 2014.
- [13] "Power System Test Case Archive," University of Washington, Electrical Engineering, [Online]. Available: https://labs.ece.uw.edu/pstca/pf14/ieee14cdf.txt.
- [14] "Power System Test Case Archive," University of Washington, Electrical Engineering, [Online]. Available: http://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm.
- [15] A. R. Al-Roomi, "Power Flow Test Systems Repository," Dalhousie University, Electrical and Computer Engineering, 2015. [Online]. Available: https://www.alroomi.org/multimedia/Power_Flow/30BusSystem/IEEE30BusSystemDATA2.pdf.
- [16] A. R. Al-Roomi, "Power Flow Test Systems Repository," Dalhousie University, Electrical and Computer Engineering, 2015. [Online]. Available: https://www.alroomi.org/power-flow/30-bus-system.
- [17] D. Karaboga, "Artificial Bee Colony (ABC) Algorithm," Intelligent Systems Research Group, [Online]. Available: https://abc.erciyes.edu.tr.
- [18] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm," *Journal of Global Optimization*, vol. 39, no. 3, p. 459–471, 2007.
- [19] B. Akay and D. Karaboga, "A modified Artificial Bee Colony algorithm for real-parameter optimization," *Information Sciences*, vol. 192, pp. 120-142, 2012.
- [20] M. Mernik, S.-H. Liu, D. Karaboga and M. Črepinšek, "On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation," *Information Sciences*, vol. 291, pp. 115-127, 2015.
- [21] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, "GSA: A Gravitational Search Algorithm," *Information Sciences*, vol. 179, no. 13, pp. 2232-2248, 2009.
- [22] I. R. Kenyon, General Relativity, Oxford University Press, 1990.
- [23] N. M. Sabri, M. Puteh and M. R. Mahmood, "An overview of Gravitational Search Algorithm utilization in optimization problems," in *IEEE 3rd International Conference* on System Engineering and Technology, Shah Alam, Malaysia, 2013.
- [24] B. O. Haddad, M. Solgi and H. A. Loáiciga, Meta-heuristic and Evolutionary Algorithms for Engineering Optimization, Wiley, 2017.
- [25] R. D. Thompson, Atmospheric Processes and Systems, Routledge, 1998.
- [26] M. L. Salby, Fundamentals of Atmospheric Physics, 1 ed., vol. 61, Academic Press, 1996, p. 627.
- [27] R. B. Stull, Meteorology for Scientists and Engineers, 2 ed., Brooks Cole, 1999, p. 528.
- [28] W. Zdunkowski and A. Bott, Dynamics of the Atmosphere: A Course in Theoretical Meteorology, 1 ed., Cambridge University Press, 2003, p. 738.
- [29] H. Riehl, Introduction to the atmosphere, McGraw-Hill, 1978, p. 410.
- [30] C. D. Ahrens, Meteorology Today: An Introduction to Weather, Climate, and the Environment, 7 ed., Brooks Cole, 2002, p. 624.
- [31] Z. Bayraktar, M. Komurcu, J. A. Bossard and D. H. Werner, "The Wind Driven Optimization Technique and its Application in Electromagnetics," *IEEE Transactions on Antennas and Propagation*, vol. 61, no. 5, pp. 2745 2757, 2013.
- [32] J. Wallace and P. Hobbs, Atmospheric Science: An Introductory Survey, 2 ed., Academic Press, 2006, p. 504.
- [33] A. Persson, "How Do We Understand the Coriolis Force?," *Bulletin of the American Meteorological Society*, vol. 79, no. 7, pp. 1373-1385, 1998.
- [34] J. Kennedy and R. Eberhart, "Particle swarm optimization," in *Proceedings of ICNN'95 International Conference on Neural Networks*, Perth, WA, Australia, Australia, 1995.
- [35] L. D. Davis, Handbook Of Genetic Algorithms, 1 ed., Van Nostrand Reinhold, 1991, p. 385.
- [36] C. W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model," in ACM SIGGRAPH '87 Conference Proceedings, Anaheim, California, 1987.
- [37] F. H. Heppner and U. Grenander, "A Stochastic Nonlinear Model for Coordinate Bird Flocks," in *The Ubiquity of Chaos*, American Association for the Advancement of Science, 1990, pp. 233-238.
- [38] Y. Zhang, S. Wang and G. Ji, "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," *Mathematical Problems in Engineering*, vol. 2015, pp. 1-38, 2015.
- [39] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, LuLu, 2012.

- [40] A. Soroudi, Power System Optimization Modeling in GAMS, 1 ed., Springer International Publishing, 2017, pp. XXI, 295.
- [41] R. E. Rosenthal, GAMS A User's Guide, Washington, DC, USA: GAMS Development Corporation, 2008, p. 293.
- [42] "Solving Constrained Nonlinear System (CNS) withGAMS," GAMS Development Corporation, [Online]. Available: https://old.gams.com/docs/pdf/cns.pdf.
- [43] "Model and Solve Statements," GAMS Development Corporation, [Online]. Available: https://www.gams.com/latest/docs/UG_ModelSolve.html.
- [44] "Extended Mathematical Programming (EMP)," GAMS Development Corporation, [Online]. Available: https://www.gams.com/latest/docs/UG_EMP.html.
- [45] "Linear Programming with GAMS," GAMS Development Corporation, [Online]. Available: https://www.gams.com/linear-programming/.
- [46] "Mathematical Programs with Equilibrium Constraints," Wisconsin Institutes for Discovery at the University of Wisconsin, [Online]. Available: https://neosguide.org/content/mathematical-programs-equilibrium-constraints.
- [47] T. Čulina, "Cjelobrojno programiranje," University of Zagreb, Faculty of Science, Department of Mathematics, Zagreb, 2015.
- [48] L. S. Lasdon, R. L. Fox and M. W. Ratner, "Nonlinear optimization using the generalized reduced gradient method," *Revue française d'automatique, informatique, recherche opé-rationnelle,* vol. 8, no. V3, pp. 73-103, 1974.
- [49] "The CONOPT Algorithm," ARKI Consulting & Development A/S, [Online]. Available: http://www.conopt.com/Algorithm.htm.
- [50] D. Asija, P. V. Astick and P. Choudekar, "Minimizing Fuel Cost of Generators Using GA-OPF," in *Proceedings of First International Conference on Smart System, Innovations and Computing*, 2018.
- [51] S. W. Tita, A. Elizabeth and S. Matthew, "Minimization of Active Power Loss in Power Systems using SVC," *International Journal of Applied Engineering Research*, vol. 13, no. 7, pp. 4951-4959, 2018.
- [52] M. Ćalasan, L. Nikitović and S. Mujović, "CONOPT solver embedded in GAMS for optimal power flow," *Journal of Renewable and Sustainable Energy*, vol. 11, no. 4, pp. 11, 046301/1-15, 2019.
- [53] D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney, "Optimal Power Flow By Newton Approach," *IEEE Transactions on Power Apparatus and Systems*, Vols. PAS-103, no. 10, pp. 2864 - 2880, 1984.
- [54] K. Y. Lee, Y. M. Park and J. L. Ortiz, "A United Approach to Optimal Real and Reactive Power Dispatch," *IEEE Transactions on Power Apparatus and Systems*, Vols. PAS-104, no. 5, pp. 1147-1153, 1985.
- [55] O. Alsac, J. Bright, M. Prais and B. Stott, "Further developments in LP-based optimal power flow," *IEEE Transactions on Power Systems*, vol. 5, no. 3, pp. 697 711, 1990.
- [56] J. A. Momoh, M. E. El-Hawary and R. Adapa, "A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods," *IEEE Transactions on Power Systems*, vol. 14, no. 1, pp. 105 - 111, 1999.
- [57] S. S. Reddy and P. R. Bijwe, "An efficient optimal power flow using bisection method," *Electrical Engineering*, p. 2217–2229, 2018.

- [58] J. Yuryevich and K. P. Wong, "Evolutionary programming based optimal power flow algorithm," *IEEE Transactions on Power Systems*, vol. 14, no. 4, pp. 1245 - 1250, 1999.
- [59] P. Somasundaram, K. Kuppusamy and R. P. K. Devi, "Evolutionary programming based security constrained optimal power flow," *Electric Power Systems Research*, vol. 72, no. 2, pp. 137-145, 2004.
- [60] Y. R. Sood, "Evolutionary programming based optimal power flow and its validation for deregulated power system analysis," *International Journal of Electrical Power & Energy Systems*, vol. 29, no. 1, pp. 65-75, 2007.
- [61] W. Ongsakul and T. Tantimaporn, "Optimal Power Flow by Improved Evolutionary Programming," *Electric Power Components and Systems*, vol. 34, no. 1, pp. 79-95, 2006.
- [62] S. S. Reddy, "Solution of multi-objective optimal power flow using efficient metaheuristic algorithm," *Electrical Engineering*, p. 401–413, 2017.
- [63] M. S. Osman, M. A. Abo-Sinna and A.A.Mousa, "A solution to the optimal power flow using genetic algorithm," *Applied Mathematics and Computation*, vol. 155, no. 2, pp. 391-405, 2004.
- [64] L. L. Lai, J. T. Ma, R. Yokoyama and M. Zhao, "Improved genetic algorithms for optimal power flow under both normal and contingent operation states," *International Journal* of Electrical Power & Energy Systems, vol. 19, no. 5, pp. 287-292, 1997.
- [65] A. Bakirtzis, P. Biskas, C. Zoumas and V. Petridis, "Optimal power flow by enhanced genetic algorithm," *IEEE Transactions on Power Systems*, vol. 17, no. 2, pp. 229 - 236, 2002.
- [66] M. S. Kumari and S. Maheswarapu, "Enhanced Genetic Algorithm based computation technique for multi-objective Optimal Power Flow solution," *International Journal of Electrical Power & Energy Systems*, vol. 32, no. 6, pp. 736-742, 2010.
- [67] A.-F. Attia, Y. A. Al-Turki and A. M. Abusorrah, "Optimal Power Flow Using Adapted Genetic Algorithm with Adjusting Population Size," *Electric Power Components and Systems*, vol. 40, no. 11, pp. 1285-1299, 2012.
- [68] M. A. Abido, "Optimal Power Flow Using Tabu Search Algorithm," *Electric Power Components and Systems,* vol. 30, no. 5, pp. 469-483, 2002.
- [69] C. Roa-Sepulveda and B. Pavez-Lazo, "A solution to the optimal power flow using simulated annealing," in *IEEE Porto Power Tech Proceedings*, Porto, Portugal, Portugal, 2001.
- [70] M. A. Abido, "Optimal power flow using particle swarm optimization," International Journal of Electrical Power & Energy Systems, vol. 24, no. 7, pp. 563-571, 2002.
- [71] J. Hazra and A. K. Sinha, "A multi-objective optimal power flow using particle swarm optimization," *European Transactions on Electrical Power*, vol. 21, no. 1, pp. 1028-1045, 2011.
- [72] J. Y. Kim, K. J. Mun, H. S. Kim and J. H. Park, "Optimal power system operation using parallel processing system and PSO algorithm," *International Journal of Electrical Power & Energy Systems*, vol. 33, no. 8, pp. 1457-1461, 2011.
- [73] R. H. Liang, S. R. Tsai, Y. T. Chen and W. T. Tseng, "Optimal power flow by a fuzzy based hybrid particle swarm optimization approach," *Electric Power Systems Research*, vol. 81, no. 7, pp. 1466-1474, 2011.

- [74] J. Radosavljević, D. Klimenta, M. Jevtić and N. Arsić, "Optimal Power Flow Using a Hybrid Optimization Algorithm of Particle Swarm Optimization and Gravitational Search Algorithm," *Electric Power Components and Systems*, vol. 43, no. 17, pp. 1958-1970, 2015.
- [75] T. Niknam, M. R. Narimani, J. Aghaei and R. A. Abarghooee, "Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index," *IET Generation, Transmission & Distribution,* vol. 6, no. 6, pp. 515-527, 2012.
- [76] R. A. El-Sehiemy, M. Shafik and A. M. Azmy, "Multi-phase search optimisation algorithm for constrained optimal power flow problem," *International Journal of Bio-Inspired Computation*, vol. 6, no. 4, pp. 275-289, 2014.
- [77] M. Varadarajan and K. S. Swarup, "Solving multi-objective optimal power flow using differential evolution," *IET Generation, Transmission & Distribution*, vol. 2, no. 5, pp. 720 - 730, 2008.
- [78] A. A. A. E. Ela, M. A. Abido and S. R. Spea, "Optimal power flow using differential evolution algorithm," *Electric Power Systems Research*, vol. 80, no. 7, pp. 878-885, 2010.
- [79] A. M. Shaheen, R. A. El-Sehiemy and S. M. Farrag, "Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm," *IET Generation, Transmission & Distribution*, vol. 10, no. 7, pp. 1634-1647, 2016.
- [80] S. Sayah and K. Zehar, "Modified differential evolution algorithm for optimal power flow with non-smooth cost functions," *Energy Conversion and Management*, vol. 49, no. 11, pp. 3036-3042, 2008.
- [81] H. R. E. H. Bouchekara and M. A. Abido, "Optimal Power Flow Using Differential Search Algorithm," *Electric Power Components and Systems*, vol. 42, no. 15, pp. 1683-1699, 2014.
- [82] S. Duman, U. Güvenç, Y. Sönmez and N. Yörükeren, "Optimal power flow using gravitational search algorithm," *Energy Conversion and Management*, vol. 59, pp. 86-95, 2012.
- [83] A. Bhattacharya and P. K. Roy, "Solution of multi-objective optimal power flow using gravitational search algorithm," *IET Generation, Transmission & Distribution*, vol. 6, no. 8, pp. 751-763, 2012.
- [84] A. R. Bhowmik and A. K. Chakraborty, "Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm," *International Journal of Electrical Power & Energy Systems*, vol. 64, pp. 1237-1250, 2015.
- [85] M. S. Jahan and N. Amjady, "Solution of large-scale security constrained optimal power flow by a new bi-level optimisation approach based on enhanced gravitational search algorithm," *IET Generation, Transmission & Distribution,* vol. 7, no. 12, pp. 1481-1491, 2013.
- [86] T. Niknam, M. R. Narimani, M. Jabbari and A. R. Malekpour, "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," *Energy*, vol. 36, no. 11, pp. 6420-6432, 2011.

- [87] S. Sivasubramani and K. S. Swarup, "Multi-objective harmony search algorithm for optimal power flow problem," *International Journal of Electrical Power & Energy Systems*, vol. 33, no. 3, pp. 745-752, 2011.
- [88] R. Arul, G. Ravi and S. Velusami, "Solving Optimal Power Flow Problems Using Chaotic Self-adaptive Differential Harmony Search Algorithm," *Electric Power Components and Systems*, vol. 41, no. 8, pp. 782-805, 2013.
- [89] A. Bhattacharya and P. K. Chattopadhyay, "Application of biogeography-based optimisation to solve different optimal power flow problems," *IET Generation, Transmission & Distribution,* vol. 5, no. 1, pp. 70-80, 2011.
- [90] M. R. Adaryani and A. Karami, "Artificial bee colony algorithm for solving multiobjective optimal power flow problem," *International Journal of Electrical Power & Energy Systems*, vol. 53, pp. 219-230, 2013.
- [91] H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido and R. A. El-Sehiemy, "Optimal power flow using an improved colliding bodies optimization algorithm," *Applied Soft Computing*, vol. 42, pp. 119-131, 2016.
- [92] H. R. E. H. Bouchekara, "Optimal power flow using black-hole-based optimization approach," *Applied Soft Computing*, vol. 24, pp. 879-888, 2014.
- [93] A. A. El-Fergany and H. M. Hasanien, "Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms," *Electric Power Components and Systems*, vol. 43, no. 13, pp. 1548-1559, 2015.
- [94] A. F. Attia, R. A. El-Sehiemy and H. M. Hasanien, "Optimal power flow solution in power systems using a novel Sine-Cosine algorithm," *International Journal of Electrical Power* & Energy Systems, vol. 99, pp. 331-343, 2018.
- [95] H. R. E. H. Bouchekara, M. A. Abido, A. E. Chaib and R. Mehasni, "Optimal power flow using the league championship algorithm: A case study of the Algerian power system," *Energy Conversion and Management*, vol. 87, pp. 58-70, 2014.
- [96] H. R. E. H. Bouchekara, M. A. Abido and M. Boucherma, "Optimal power flow using Teaching-Learning-Based Optimization technique," *Electric Power Systems Research*, vol. 114, pp. 49-59, 2014.
- [97] A. E. Chaib, H. R. E. H. Bouchekara, R. Mehasni and M. A. Abido, "Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm," *International Journal of Electrical Power & Energy Systems*, vol. 81, pp. 64-77, 2016.
- [98] M. Ghasemi, S. Ghavidel, M. M. Ghanbarian, H. R. Massrur and M. Gharibzadeh, "Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study," *Information Sciences*, vol. 281, pp. 225-247, 2014.
- [99] N. Daryani, M. T. Hagh and S. Teimourzadeh, "Adaptive group search optimization algorithm for multi-objective optimal power flow problem," *Applied Soft Computing*, vol. 38, pp. 1012-1024, 2016.
- [100] M. Tripathy and S. Mishra, "Bacteria Foraging-Based Solution to Optimize Both Real Power Loss and Voltage Stability Limit," *IEEE Transactions on Power Systems*, vol. 22, no. 1, pp. 240 - 248, 2007.

- [101] S. S. Reddy and C. S. Rathnam, "Optimal Power Flow using Glowworm Swarm Optimization," *International Journal of Electrical Power & Energy Systems*, vol. 80, pp. 128-139, 2016.
- [102] A. A. Christy and P. A. D. V. Raj, "Adaptive biogeography based predator-prey optimization technique for optimal power flow," *International Journal of Electrical Power & Energy Systems*, vol. 62, pp. 344-352, 2014.
- [103] W. Warid, H. Hizam, N. Mariun and N. I. A. Wahab, "Optimal Power Flow Using the Jaya Algorithm," *Electric Power Systems Research, Energies*, vol. 9, no. 9, pp. 9, 678/1-18, 2016.
- [104] C. Mishra, S. P. Singh and J. Rokadia, "Optimal power flow in the presence of wind power using modified cuckoo search," *IET Generation, Transmission & Distribution*, vol. 9, no. 7, pp. 615-626, 2015.
- [105] S. S. Reddy and B. Panigrahi, "Optimal power flow using clustered adaptive teaching learning-based optimisation," *International Journal of Bio-Inspired Computation*, vol. 9, no. 4, pp. 226-234, 2017.